

Reconstruction of Solar EUV Flux 1740-2015

Leif Svalgaard Stanford University AGU, Fall SA51B-2398, 2015

The Diurnal Variation of the Direction of the Magnetic Needle

a degree

National Geomagnetic Service, BGS, Edinburgh GDAS 1 Fluxgate Data Hartland lat: 50.995N lon: 355.516E Declination in degrees east 1/10th of 06 12 Hour (UT) Date: 22-06-2004 Dav number: 174 W F F 760 10 Days of Variation 740 720 700 680 660

640

George Graham [London] discovered [1722] that the geomagnetic field varied during the day in a regular manner.

Balfour Stewart, 1882, Encyclopedia Britannica, 9th Ed.

"The various speculations on the cause of these phenomena [daily variation of the geomagnetic field] have ranged over the whole field of likely explanations. (1) [...], (2) It has been imagined that convection currents established by the sun's heating influence in the upper regions of the atmosphere are to be regarded as conductors moving across lines of magnetic force, and are thus the vehicle of electric currents which act upon the magnet, (3) [...], (4) [...].

Balfour Stewart 1828-1887

"there seems to be grounds for imagining that their conductivity may be much greater than has hitherto been supposed."

Ionospheric Layers

Dynamo

An effective dynamo process takes place in the dayside E-layer where the density, both of the neutral atmosphere and of the electrons are high enough.

We thus expect the geomagnetic response due to electric currents induced in the E-layer.

The magnetic effect of this system was what George Graham discovered

The Physics

With the possible exception of the 'solar boxes' the physics of the rest of the boxes is well-understood

We'll be concerned with deriving the EUV flux from the observed diurnal variation of the geomagnetic field

Electron Density due to EUV

< 102.7 nm $O_2 + h\nu \xrightarrow{J} O_2^+ + e^ O_2^+ + e^- \xrightarrow{\alpha} O + O$ The conductivity at a given height is proportional to the electron number density N_e . In the dynamo region the ionospheric plasma is largely in photochemical equilibrium. The dominant plasma species is O^+_2 , which is produced by photo ionization at a rate J (s⁻¹) and lost through recombination with electrons at a rate α (s⁻¹), producing the Airglow.

The rate of change of the number of ions N_i , dN_i/dt and in the number of electrons N_e , dN_e/dt are given by $dN_i/dt = J \cos(\chi) - \alpha N_i N_e$ and $dN_e/dt = J \cos(\chi) - \alpha N_e N_i$. Because the Zenith angle χ changes slowly we have a quasi steady-state, in which there is no net electric charge, so $N_i = N_e = N$. In a steady-state dN/dt = 0, so the equations can be written $0 = J \cos(\chi) - \alpha N^2$, and so finally

 $N = \sqrt{(J \, \alpha^{-1} \cos(\chi))}$

Since the conductivity, Σ , depends on the number of electrons *N*, we expect that Σ scales with the square root $\sqrt{(J)}$ of the overhead EUV flux with $\lambda < 102.7$ nm. 7

Solar Cycle and Zenith Angle Control

The Diurnal Variation of the Declination for Low, Medium, and High Solar Activity

POT-SED-NGK 1890-2013

PSM-VLJ-CLF 1884-2014

PSM-POT-VLJ-SED-CLF-NGK

A 'Master' record can now be build by averaging the German and French chains.

We shall normalize all other stations to this Master record.

Adding Prague back to 1840

If the regression against the Master record is not quite linear, a power law is used.

And So On: For 107 Geomagnetic Observatories with Good Data

POT	COI	WIK	BSL	DBN	VAL
SED	WNG	AAA	TOR	WIT	VIC
NGK	TOK	ARS	MON	FUR	YAK
PSM	HRB	ASP	AML	WLH	SPE
VLJ	TOO	BDV	AQU	EKT	MIL
CLF	WAT	BEL	BTV	BAL	BER
KAK	SIT	BJI	PET	OSL	TFS
ESK	SSH	BOU	ROM	CLA	MBO
HLS	PIL	BOX	EYR	ABG	CBI
NUR	LOV	SFS	FRN	WIE	LRM
CLH	RSV	CDP	GNA	GRW	NVS
FRD	BFE	CNB	HLP	MNH	PAG
HON	HER	CTA	EBR	KLT	PPT
TUC	SVD	HBK	MIZ	GEN	PST
VQS	AGN	ISK	GCK	MNK	THY
SJG	ΟΤΤ	LNN	IRT	KNZ	STJ
ABN	HBT	TAM	JAI	DOU	CZT
HAD	PRA	MMB	LER	LVV	

Composite rY Series 1840-2014

From the Standard Deviation and the Number of Station in each Year we can compute the Standard Error of the Mean and plot the ±1-sigma envelope.

Of note is the constancy of the range at every sunspot minimum

EUV and its proxy: F10.7 Microwave Flux

Space is a harsh environment: Sensor Degradation

rY and F10.7^{1/2} and EUV^{1/2} V

Reconstructed F10.7 [an EUV Proxy]

Agreement across UV spectrum

The Bremen Mg II (λ = 280 nm) Index composite (courtesy Mark Weber) has very high correlation (R² = 0.98, yearly) with our rY composite.

Scaling the Mg II index and the (bit more noisy) NSO Ca II K-line index (λ = 393 nm) to the Diurnal Range, rY, shows that all three indices agree well over the range from EUV to low- λ visible.

Reconstructed EUV Flux 1840-2014

This is, I believe, an accurate depiction of 'true' solar activity since 1840

We Can Go Further Back

Abstract

Solar Extreme Ultraviolet (EUV) radiation creates the conducting E-layer of the ionosphere, mainly by photo ionization of molecular Oxygen. Solar heating of the ionosphere creates thermal winds which by dynamo action induce an electric field driving an electric current having a magnetic effect observable on the ground, as was discovered by G. Graham in 1722. The current rises and sets with the Sun and thus causes a readily observable diurnal variation of the geomagnetic field, allowing us the deduce the conductivity and thus the EUV flux as far back as reliable magnetic data reach. High-quality data go back to the 'Magnetic Crusade' of the 1830s and less reliable, but still usable, data are available for portions of the hundred years before that. J.R. Wolf and, independently, J.–A. Gautier discovered the dependence of the diurnal variation on solar activity, and today we understand and can invert that relationship to construct a reliable record of the EUV flux from the geomagnetic record. We compare that to the F10.7 flux and other solar indices, and find that the reconstructed EUV flux reproduces the F10.7 flux with great accuracy. The reconstruction suggests that the EUV flux reaches the same non-zero value at every sunspot minimum (possibly including Grand Minima), representing an invariant 'solar magnetic ground state'.