The International Sunspot Index R_i A perspective on the last 50 years

Frédéric Clette

SIDC – WDS "Sunspot Index" Royal Observatory of Belgium

The Sunspot Index: 4 eras

Epoch	Historical (1610-1848)	Wolf (1848 – 1882)	Zürich (1882 – 1980)	SIDC (1981 – now)		
Observations	Sparse	Systematic	Systematic	Systematic		
Obs. technique	Variable	Eyepiece	Eyepiece	Eyepiece or drawing (proj.)		
Stations (daily)	Base: 1	Base: 1 Aux: a few	Base: 1 then 2 Aux: ~30	Base: 1 + full network (~45)		
Geog. Distrib.	W-Europe	W-Europe	Europe + Asia	Worldwide		
Processing	Manual	Manual	Manual	Computer		
Reference	Successive obs. K=1	Wolf (Zürich) K=1	Zürich+Locarno K=0.6	Locarno K=0.6		
Small spots	No	No	Yes	Yes		
K coefficients	Estimates	Regular	Systematic (yearly)	Systematic (monthly)		
Est. Yearly error (%)	10 - 45	10	< 5	< 1		
Est. Accuracy (%)	20 - 50	20	5 - 10	~ 5		
Drift control	Loose, indirect	Loose, indirect	Direct (RGO, F _{10.7})	Direct (many)		

The questions

- How did the transition Zürich Brussels occur ? (1957 now)
- What is the connection between R_z and R_i?
- How is R_i currently produced ? (*The method*)
- What is the array of SIDC sunspot products ?
- How do R_z and R_i compare with other indices ?
- Subjectivity versus objectivity?

The actual strengths and weaknesses of the visual index

What can we do next?
 Perspectives for better understanding R, & Ri

The Zürich era: 1957 - 1979

- Max Waldmeier [1912-2000] (Director: 1945-1979)
 - "Standard Curves" prediction method
 - Many eclipse expeditions
- 1951: renovation of the Zürich Observatory buildings (solar tower).
- 1957-1958 (IGY): Zürich is designated by the URSI as World Data Center for the sunspot number.
- 1957: Foundation of a new station in Locarno

The other "Zürich" station: Specola Solare in Locarno

- Motivation:
 - Degradation of observing conditions at Zürich Observatory.
 - More observing days: anticorrelation of weather patterns North and South of the Alps.
- "Specola Solare Ticinese" station at Locarno Monti (alt: 370 m)
- Funding:
 - Canton Ticino: local education in astronomy (planetarium, lectures)
 - Private fundation (sponsors, national lottery, etc.)
 - Collaboration with IRSOL and ETH Zürich

The other "Zürich" station: Specola Solare in Locarno

- Instrument: Zeiss coudé refractor: D=15cm, F=2.25m
- Drawings: 25cm projected image.
- Sunspot counts: separate observation directly through eyepiece
- Main observer: S.Cortesi starts his uninterrupted observing series at Locarno (continue to these days !)
 - Young engineer
 - Amateur astronomer: accurate planetary drawings
- Since 2007, training of a successor: Marco Cagnotti (Director)

The other "Zürich" station: Specola Solare in Locarno

- After 1957, Locarno quickly becomes the main station for establishing R_z
- Training by M. Waldmeier:
 - Same observing method (aerial image, sunspot weighting)
 - Continuous cross-comparisons
 Zürich-Locarno (1957-1979)
- In 1981, Locarno is chosen as the pilot station of the SIDC-Brussels to ensure a seamless Zürich-Brussels transition.

September 2011

•

The Zürich – Brussels transition (1979-1981)

The context: - General mistrust versus the visual index in favor of new indices

- (F_{10.7cm} radio flux)
- Growing discrepancies between
 R_z and the American sunspot
 number R_A (A. H. Shapley, AAVSO)
- In 1978-80, IAU Working Group involving A.H. Shapley & J.A.Eddy favoring the termination of the Zürich sunspot number

The Zürich – Brussels transition

- Internal reorganization at the Zürich Observatory:
 - In the 1970, integration in the Eidgenössische Technische Hochschule (ETH, Federal Institute of Technology).
 - New ETH Director J.O. Stenflo: new orientation in high resolution polarimetry
 - Global wish to close the Waldmeier era (felt as too authoritative)
- Strong support from international scientific community:
 - 1978: COSPAR resolution and URSI support requesting the continuation of the SSN
- Feb. 1980: call to the community issued by the Zürich Observatory
 - Contacts with A. Koeckelenbergh of the ROB (Uccle station)
- June 3-6, 1980, meeting at ETH Zürich (O.Stenflo, K.Dressler, M.Waldmeier, S. Cortesi, A. Koeckelenbergh):
 - Formal decision to transfer the WDC sunspot to Brussels

Meeting at the ROB: February 2011

Meeting at the ROB: February 2011

Creation of the Sunspot Index Data center

Data service endorsed by 3 Unions: IAU, URSI, IUGG •

- Official declaration: 1982, IAU General Assembly (Patras)
- Supervision through ICSU, International Council of Scientific Unions (UNESCO; _ www.icsu.org)
- Since 2011, integrated in the new World Data Services (WDS)
- New name: "Sunspot index data Center": SIDC
- New index: International Sunspot Number R; (new method)
- Funding: •
 - Mostly ROB: Integration among international services hosted by the ROB
 - Very limited resources: ROB computer infrastructure, running costs (mailings)
- **Staff** (all part time): •
 - 1 lead scientist (Director) > F. Clette
 - 1 programmer/system manager > L. Wauters
 - 1 employee: O. Boulvin

Directors: •

- 1981-1992: A. Koeckelenbergh
- 1993-2002: P. Cugnon
- 2003-2010: R. Van der Linden
- Since 2011: F. Clette

SIDC founder, retired (prime information source!)

- deceased 2002
- **ROB** Director since 2005
- involved since 1990

The R_i production method

The SIDC worldwide network

- About 86 stations in 29 countries.
 - Still highly concentrated around Europe
 - Low participation in N-America (AAVSO)

Past: postal mail, faxes, e-mails > manual encoding, conversions

Since 2005, Web-based form:

- Private page for each observer
- "Live" data consistency feedback (PHP)

• Data archival:

- All raw reports to SIDC since 1981 (spot & group counts)
- Digitization of past reports to Zürich since 1950 (in progress)
- Tracking of stations used in the provisional and definitive calculations only since 1992

Data import

			_					_	_		_			_		
Aozilla Firefo	x															
<u>E</u> dit ⊻jew	<u>G</u> o <u>B</u> ook	marks <u>T</u> e	ools <u>H</u> elp													
i • 🧼 • 🛃	7 🛞	n 🕞	http://side	.oma.be/WO	LF/interf_su	inspots.ph	ιp							v O	Go G	
						1	WOLF	interf	ace							
			_													
atted files for A	Area Tota	als 🚩 P	MONTH ()7 YEAF	R 2006	STATIC	DN: ALL	Station								*
h Station by:	Any strin	g	LIKE	Locarno												
Sunspot	s Collect	tion Pr	oducts	Change (STATION	Defir	nitions	Rules								
				SUNSP	OTS CO	DLLECI	ION for	your UC	CLE BI	ELGIUM	STATIO	ЛC				
					<i></i>											
			I days of	Plea: the month	All day	orm to in /s of the	luly mont	data, clic h	MONTH MONTH	D to subm	it it <u>Help</u> FAR	Othe	er month			
			radys or		<u>[////////////////////////////////////</u>	/o or the	oury mone		10101111	••••			STINOII			
		Clic	k colum	to have	a tab orde	r per colu	umn or clicl	k line	to return	to an inser	tion data	per day (t	he default)			
		No v	alue=empt	ty field 0=t	he value is	; really 0	Totals fi	elds(*) ar	e required	when you	put some	thing for	a given day	7		
Mo	nth 08 Ye	ar 2006	Total			North			South			Center				
Day	Time	Quality	Groups*	Sunspots*	Wolf*	Groups	Sunspots	Wolf	Groups	Sunspots	Wolf	Groups	Sunspots	Wolf		
01	1500	3	1	5	15										Clear	
02	1030	2	1	1	11										Clear	
	00.45														0.000	
03	0845	3	2	2	22										Clear	
03	1445	3	2	2	22										Clear	
03	1445	3	2	2	22			0							Clear	
03 04 05	0845 1445 0945	3	2 0 1	2 0 1	22 0 11										Clear Clear Clear	
03 04 05 06	0845 1445 0945 1045	3 3 3 3	2 0 1 0	2 0 1 0	22 0 11 0										Clear Clear Clear Clear Clear	
03 04 05 06 07	0845 1445 0945 1045 0845	3 3 3 3 3 3	2 0 1 0 0	2 0 1 0 0	22 0 11 0 0										Clear Clear Clear Clear Clear Clear	
03 04 05 06 07 08	0845 1445 0945 1045 0845 0820	3 3 3 3 3 3 3 3	2 0 1 0 0 1	2 0 1 0 0 1	22 0 11 0 0 11										Clear Clear Clear Clear Clear Clear Clear	
03 04 05 06 07 08 08	0845 1445 0945 1045 0845 0820	3 3 3 3 3 3	2 0 1 0 0 1	2 0 1 0 0 1 1	22 0 11 0 0 11										Clear Clear Clear Clear Clear Clear Clear	
03 04 05 06 07 08 09	0845 1445 0945 1045 0845 0820	3 3 3 3 3 3			22 0 11 0 11 11 11 11 11 11 11										Clear Clear Clear Clear Clear Clear Clear Clear	

R_i processing flowchart

Special processing rules

- Treatment of low R_i values (many stations reporting W=0):
- Principle:
 - R≠0 at a significant number of stations = strong indication that there was a spot (part of the day?).
 - R=0 at a few stations: not sufficient to decide that there was no spot.
- Rule:

 If 20% < N_(R=0) < 80% then only stations with R≠0 are taken into account.

Based on the histogram of all observed R_i values

For consistency with R_z (single base station Zürich):
 If 0 < R_i < 7, R_i set to 7

Definitive sunspot numbers

- Computed quarterly
- 3-month delay to leave time for late reports (snail mail)
- Typically 20 additional stations
- Same processing as the provisional SSN
- Provisional values are not automatically replaced by the new values ! Most provisional values are left unchanged.
- Rule:

Ri(Prov) is replaced by a new R_i(Def) value only if |R_i(Def)-R_i(Prov)|> 5%

- Manually supervised process:
 - Histograms of raw input data
- Once determined, definitive values cannot be changed !

R_i versus R_z

- Fixed computerized processing chain
- Continuous use of the entire network
- Scaling of each station to Locarno (monthly average K)
- Use of the K coefficient of the current month instead of the average of previous year
- Possible exclusion of anomalous daily Locarno values

Still a central role played by the Locarno station

Stability of the Locarno station

The key role of the Locarno station

R_i has accurately tracked the Locarno pilot station

R_i and W_{Locarno} are almost equivalent

Long term stability of the Locarno station

- Two kinds of validation: intrinsic and comparative
- Cross-comparison with external data series:
 - Sunspot numbers from individual stations:
 - Sunspot numbers from independent networks:
 - Other solar indices (SS area, F10.7cm, Call-K, MgII):

But not fully comparable: different solar source (see later)

Locarno versus F10.7cm

Locarno versus NOAA-Boulder SSN

Locarno versus ISOON SSN

Locarno versus R_A SSN (AAVSO)

Locarno versus R_A SSN (AAVSO)

Locarno versus Kanzelhöhe

Internal Locarno diagnostics

R_i = absolute index (cf. TSI)

Validation rests primarily on the understanding and validation of the different elements involved in the measurements

• Change in the instrument:

- No modifications
- Ageing: verifications showed that the optics did not degrade (objective lens, staining of coudé mirror)

Change in the observing conditions (seeing):

- Small degradation around 1998 (reason non identified)
- Minor change compared to larger degradation in 1967 (new villa built south of the observatory): no impact was identified on W_{LO} and R_z.

Locarno seeing evolution

- Average yearly observing quality:
 - Step in 1967: 2.5 to 2.8
 - Trend after 1967: 2.8 to 2.9

- Number of bad days per year (Q>3):
 - [% of ~290 obs. Days/year]
 - Peak in 1967: 40 [14%] to 90 [31%]
 - No definite trend after 1970
 - Jump 1997-2000:
 50 [17%] to 70 [24%]

Internal Locarno diagnostics

- Change of the observer:
 - Only one main observer (>90% of observations): S. Cortesi
 - No health or eyesight problems
 - Tracking of internal K coefficient of 4 alternate observers: no trend
- Change in the daily practices or counting method:
 - Weighted Waldmeier counts since the origins: same person doing the counts
 - Relative K coefficients of alternate observers close to 1:
 0.961 to 1.037 (i.e. +/- 4 %)

- M. Bianda
- 25 years
- K= 0.961
- Trend=
 0.0 +/ 0.002

 Andrea
 18 years
 K= 1.031
 Trend= 0.0 +/-

0.002

- R. Ramelli
- 4 years
- K= 0.986
- Trend=
 0.0 +/- 0.08

The SIDC data products

Web data access

Daily, monthly, monthly mean values and forecasts

September 2011

Sunspot Index Workshop, Sac Peak

39

Estimated International SSN (EISN)

- Increased demand for a daily sunspot index
- Derived from a subset of up to 15 stations providing data before 12:00UT.
- Simple average of raw counts
- Multiplied by the K personal reduction coefficients produced by the full monthly processing.
- Published in the daily SIDC URSIGRAM at 12h30UT:
 - Values for today and yesterday

SOLAR FLARES : Eruptive (C-class flares expected, probability >= 50%) GEOMAGNETISM : Quiet (A<20 and K<4) SOLAR PROTONS : Quiet PREDICTIONS FOR 20 Dec 2005 10CM FLUX: 088 / AP: 019 PREDICTIONS FOR 21 Dec 2005 10CM FLUX: 088 / AP: 005 PREDICTIONS FOR 22 Dec 2005 10CM FLUX: 082 / AP: 001 COMMENT: The solar wind speed has been systematically rising in the last 24 hours and is currently at 600km/s. We presume that this is due to the influence of small coronal hole half way between active regions NOAA837 and NOAA835. We expect that the influence on geomagnetic conditions will in any case remain small. As of today, we start with a new data product, the 'Estimated International Sunspot Number', which we will distribute through these daily messages. Note also the link at the bottom of this message where you can find more information.

The SSN and the other global solar indices

R_i compared to other solar indices

- Most indices are chromospheric or coronal (F_{10.7cm}, Call-K, MgII c/w) or contain a wide mix (TSI):
 - Different physical relation to the underlying magnetic flux emergence:
 - Non-linear relation
 - Time lags
 - R_i closely related to magnetic flux emergence:
 - High threshold on magnetic field (> 1000 Gauss)
 - Spots disappear early in the magnetic decay of an active region
 - Chromospheric and coronal indices contain a strong contribution from weak decaying fields (flux dispersion): plages, faculae, ephemeral regions, quiet Sun/ coronal hole relative area.
 - Discrepancies do not mean disagreements and flaws !
- Index differences = solar information

Call K, Kitt Peak Obs.

Nobeyama, radio, 17GHz

Assumptions in all solar indices

• Group sunspot number:

$$R_g = \frac{1}{N} \sum_{i=1}^{N} k_i 12.08 g_i$$

 All groups contain the same average number of spots at all epochs

• Total Sunspot area:

- Choice in the definition of sunspot boundary: error up to 100% (*Pettauer,T. & Brandt, P.N. 1997*)
- Different methods (RGO, ISOON) > 1.4 scaling factor (Wilson & Hathaway, 2006)

• F10.7 radio flux:

 Undersampling and empirical filtering rules (Tapping, K.F.& Charrois, D.P. 1994)

Total solar Irradiance:

 Assumptions in instrument models: 0.6% disagreements = 4x amplitude of solar cycle in TSI.

Assumptions in all solar indices

- Call-K plage index (e.g. Foukal, P. 1996, 1998):
 - Different photographic plates
 - Assumptions in definitions of plage areas and brightness
- **Mgll c/w ratio** (e.g. White et al. 1996; Svalgaard 2007):
 - Assumption: core to wing ratio cancels out instrumental effects
 - Not true! Disagreement > 5% between UARS and earlier spacecraft calibrations
- Polar magnetic field (Schatten, K.H. & Pesnell,W.D. 1993; Schatten,K.H. 2002):
 - Grazing LOS: projection effect
 - Incomplete view of polar regions
 - Assumptions (radial field lines, etc.)

R_i and other solar indices

- High correlation of R_i with recent indices:
 - > 97% with photospheric indices
 - R_i is a quantitative index

Advantages of other indices:

- Based on a quantitative "impersonal" measurement (flux, area)
- Precision equal or higher than R_i

Limitations of other indices:

- Short duration (only recent solar cycles)
- Difficulty of long-term absolute calibration
 - Single or few stations (no cross-validation or trend diagnostics)
 - Short-lived instruments replaced by new different ones (space)
 - Few non-overlapping or discontinuous data sets
- Subjectivity "layer" at the processing stage:
 - Index definition (assumptions: choice of thresholds, boundaries)
 - Instrument modeling (assumptions: ageing, response, stray light, etc.)
 - Elimination of artifacts: empirical filters and criteria

The R_i human factor: subjective or objective ?

• Four steps where the human factor can play a role:

– Observation:

- Visual factors (human vision)
- Optical factors (instrument, seeing)
- Observer bias (state of mind, personal habits)

- Choice of processing method

The R_i human factor: human vision

- No biological change in the detector at century scales (eye + visual cortex)
- Capacity to "integrate" seeing distortions (not a simple averaging !):
 - Visual cortex plays an essential role
 - Until recently (SDO, HMI), capacity to detect the smallest spots was superior to photography and CCD

Imaging data not directly comparable or substitutable:

 Effects of sensor/optical resolution, seeing will have a different influence on the resulting counts for images and human eye

The R_i human factor: optical factors

- No specific aperture required for SIDC contributing observers
- How is the detection of the smallest spots influenced by the resolution?
- Two factors:
- Theoretical optical resolution (unobstructed aperture):
 - Rayleigh criterion:
 - Dawes criterion:
- $\theta = 138 / D(mm)$ $\theta = 116 / D(mm)$

• Seeing:

- variable with time, daytime range similar for all low-altitude sites:
 1.5 to 3, typ. 2 arcsec (equiv. D= 45 90 mm, typ. 70 mm)
- Large apertures more affected (size of turbulent eddies ~8 -12 cm):

Reduces the difference of effective resolution between small and large apertures (> 10 cm)

What is the smallest possible sunspot ?

- Various definitions:
 - Semantic problem "pore" vs "sunspot":
 - Pore = small spot without penumbra
 - Pore = random intergranular blemishes that are not real sunspots

Source	Spot diameter	Spot lifetime	Pore diameter	Pore lifetime
Bray & Laughhead 1964	With penumbra		Without penumbra	
Waldmeier (Husar 1967)	>3" (2000km) = 1 granule	> 30 min	< 3"	< 30min
Bruzec & Durrant 1977	>10″ (6000km)	> 1 day	< 5″	< 1 day
McIntosh 1981	> 4" (2500km) = 1 granule		< 4"	

- Overall agreement: lowest spot size near 2000 km (3 arcsec)
 - Dictated by granulation dynamics rather than spots (cancellation of convective motion): lifetime: avg. 10 min (up to 30 min)

Sunspots and "pores"

 \bigcirc

What is the smallest possible sunspot ?

• Best "observational" definition:

	Diameter	Lifetime	Outline	Contrast	Penumbra
Granulati on (pore)	< 3″ < 2500km	< 30 min	Fuzzy Irregular	low	none
Sunspot	> 3″ > 2500 km	> 30 min	Sharp ~ round	High Dark core	none

- Simple criteria naturally adopted by all observers
 - No major discrepancies due to personal subjective interpretation
- Match of the smallest real-spot angular size with usual seeing (3 arcsec) and telescope aperture D= 50 mm:
 - Limited gain in small spot counts at apertures > 50 80 mm

(cf. Svalgaard, private communication)

 Small-aperture bias only expected for early historical observations before the 19th century (D << 70mm)

The R_i human factor: SIDC "freewheel" philosophy

- No detailed counting rules imposed to SIDC observers.
 - Observers reluctant to obey rules
 - Danger of imposed rules: slow insidious return to natural practices
 - Relying on the observer experience:
 - Same observer & instrument over years or decades

Long term self-consistency is more important than equivalence to a model (network average, pilot station)

Importance of dedicated amateurs vs "volatile" professionals.

The R_i human factor: random variations

Causes of random variations:

- Daily mood, mistakes
- Daily changes of the observer (group splitting, umbral splitting)
- Seeing variations
- Random daily subset of network contributors (local weather) ~50/85
- Sampling = One-day binning (UT) >> "aliasing":
 - Fast small-scale changes in active regions (small short-lived spots)
 - Limb transits of large active regions
 - Strong effect mainly when a single spot/group on the solar disk!

Equivalent to detector noise

- Filtered out by the daily tracking of K coefficients:
 - Elimination of outliers based on standard deviation of daily K values.

Main biases: Group and umbral splitting

Group splitting:

- Topological criteria without external information (magnetograms)
- No general scientific rule
- Impact on W number limited:
 - Involves only a minority of groups
 - Can raise or lower W

• Umbral splitting:

- Each umbra in common penumbra is counted as a separate spot (Wolfer rule)
- Two umbrae considered as split only if separated by a complete light bridge
- Prone to interpretation
- Can lead to a net bias

Various group splitting rules (Kunzel 1976):

- Non-bipolar groups: all spots within 5°x5° (60,000 x 60,000 km)
- Bipolar groups: up to 20° extension
- Rules for marginal cases:
 - Two spots up to 15° apart form a single group if they are the remainder of a large extended group
 - A bipolar collection of spots forms one group if Lat(West) ≤ Lat(East)
 - Typical tilt angles: 1-2° at 10° latitude, 4° at 30° latitude

The R_i human factor: observer bias

• Causes of biases:

- Splitting of large complex groups
- Splitting of multiple umbrae in common penumbra
- Frantic quest for the largest count (including tiny ephemeral blemishes)
- Prior consultation of other observations (WEB CCD images) leading to expectations:
 - Bias emerging in recent years?
- Sources of trends (slow variations in the personal biases):
 - Observer ageing (visual acuity; age > 50)
 - Trend in sky quality (urbanization)
 - Slow evolution of network members
 - Instrument ageing

Tracked by K-coefficient system:

- Uncorrelated biases (network): independent worldwide observations
- One special case: the Zürich-Locarno reference station

An essential step: processing method

- Change in the data processing method

 primary cause of possible biases
 - **Problem common to all indices**
- Zürich-Locarno Sunspot Index:
 - Choice to drop smallest spots (Wolf)
 - Magnetic needle corrections (Wolf)
 - Weighting of sunspot counts (Wolfer Waldmeier ?)
 - Change of primary station (Zürich Locarno)
 - Change in the composition of network (observer mix, geographical distribution): e.g. Zürich-SIDC transition
 - Smaller impact for large networks (SIDC strategy)
 - Manual method: sparsely documented (occasional indications scattered over many different issues of the Mitteilungen)

An essential step: processing method

The case of the American number R_A (AAVSO):

- Lack of reference station
- Manual processing
- Additional observer rating factor
- Flaws in the processing method: found after 50 years
- Original data lost before 1992
 No correction possible

The Golden rules

1.Archival of all raw input data

2. Detailed documentation of the processing method and definitions and of the

observing technique

- **3.Tracking of processing changes**
- 4. Change only when it is essential (e.g. discovery of a flaw)
- **5.Long overlap periods:**

old and new indices computed in parallel (min. one solar cycle)

Future prospects

Future prospects for R_i: Exploring and understanding R_z to improve the current R_i

- Scaling of the Wolf values before 1882? Size of the corrections? Weren't raw values better?
- What is the actual date of the introduction of large spot weighting still in use at Locarno?
- Need to recover information about individual sunspot groups: historical sunspot drawings (*cf. next session*)
 - in particular collections from observers who contributed to R_z
- Zürich & Locarno original sunspot drawings awaiting processing ! (since 1911 on microfilm)

September 2011

Future prospects for R_i: Exploring R_i to better understand the past index R_z

Mozilla Firefox													-
<u>E</u> dit <u>V</u> iew <u>G</u> o <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp													
🛛 - 🧼 - ಿ 💿 🎧 🗋 http://sidc.oma.be/V	VOLF/products,	/average	.php								~		Go G
 What is the hias. 	intro	du	CP	dh	1.th	P.	000	arn	a	veir	aht	in	7 r
	HIUAU		y er								<i>y</i>		J •
											•		
How would R; che	ange	ρτ Α Λ	<u>ner</u>	<u>n ch</u>	00	sin	g a	not	he	r p	HOt	S T	ation for
	AVERA	GE MI	N MAI	C AVERA	AGE MII	MA2	CAVERA	GE MIN	[MA>	AVERA	AGE MII	MA	X DAYS
NDRE GAR average of se	vera	l re	tei	ren	ce [°] s	sta	tior	15?	Nc) ² Dİ	lot	sto	ation?
USTRALIAN OBS. COONABARA ANA AUST	3	2	4	T	0 -	3	3	J	8	1	6-	35	26
ARNES AUCKLAND NEW-ZEALAND		3	4	1		2	P	U	9	16		29	14
TANA TANA USES 2040 2140 Proved	I K; D	e o	ŊŢ	aine	20 1)y	retr	OSP)e	ŢĮV	ery		opping
ATANIA ITALY - USSES CODE ST409-	4		5	1	1	- P	7	4 -	16	20	74	40	23
AFVS STATIONS WITH ODV	/IOUS	-tic	W.	s?	0	3	7	0	14	19	0	41	24
DURDURIE MARCO EN BAROEUL FRANCE	3	1	5	1	0	2	5	0	12	18	0	32	18
RIMEAN OBSERVATORY UKRAINE	3		5	1	0	2	9	0	33	22	0	53	27
JLGOORA NARRABRI AUSTRALIA	2	2	3	1	0	3	6	0	13	18	0	37	12
BACKER BOOM BELGIUM	4	3	5	1	0	2	8	0	23	22	0	43	31
● IS LAN Ariginal SIDC	data	an	d k		off	icie	onte	: cir	rce	23 1 C	126	ñ	<u>م</u> ۱۲
BRO ROQUETES SPAIN	uala	an	4			3		- 311	13	20		43	31
ERNANDEZ RUIS SANTANDER SPAIN		2	3	1	0	2	7	0	15	20	0	35	22
JIMOR SLUNCEUNDS A UALAL	Jase.	1	4	2	1	3	10	1	21	25	11	51	12
EMA ARAUJO SPAIN	3	2	4	1	0	2	8	0	19	21	0	39	30
New prospects for	nr ðvr	JA	ind	h⁺°r	e ri	$\gamma'\lambda$	da	$t \sigma c$	nn	1ª i i r	nde	rct	andina
	n crp	ngi	1819	j 1 C T T		л ₃ v v	ци		1 8 7 0	1401	IUC	୲ୢୄ୰୲	unung
AVANA SOLAR STATION CUBA		m^{3}	+4h			$\frac{2}{1}$			9	14	0	27	28
AZEL COLFFE UNTERPORTEN OJ VUT	ious	THE	. 14 1	ouc	nog	πu	II CI	ΙΟΙ	.es	20	0	37	28
ULLUMAN U.S.A USSPS code 21305-	3	1	4	1	1	2	12	2	25	25	12	43	25
VEZDAREN PRESOV (SLOVAKIA) Mgr.Peter Ivan - vezdaren a planetarium Dilongova 17- 080 01 Presov	4	2	5	1	0	3	8	0	18	21	0	38	28
EF CLAES (BELGIUM)	4	2	5	1	0	2	9	0	18	22	0	38	25

September 2011

SIDC stations: 30-year panorama of K coefficients

• All stations

Future prospects for R_i: Investigation of image-based indices (photo, CCD)

- Can a proxy of R_i be created in the future, based on images data?
- require long cross-calibration (whole range of activity
 more than one cycle)
 complex visibility of smallest
 - spots vs seeing, contrast.
 - No replacement soon.
 - New indices can be created but are distinct from R_i and derived in parallel.

(Zharkova et al. EGSO, 2003)

Conclusions

- The R_i index = a decisive modernization vs the manual R_z
 - Large base of observers in a worldwide network
 - Constant & documented processing scheme over 30 years
- R_i is still scaled according to a single pilot station: Locarno
- Multiple validations confirm the good stability of the pilot station over at least the last 25 years.
- R_i is a quantitative measurement highly correlated to equivalent modern "flux" indices.
- The subjectivity in the SSN is limited by intrinsic factors.
- It can now be largely tracked and corrected by statistics over many stations.

Conclusions

- Interpretations of differences and drifts of SSN vs other indices must be done with caution:
 - Most indices include human assumptions (empirical, instrument model, etc.)
 Different non-linear relations to magnetic flux emergence.
 - - Cf. other talks !
- New prospects are opening up for better understanding R₇ and R_i:
 - Exploitation of historical drawing collections: Zürich-Locarno
 - Full SIDC database of raw observations and K coefficients.

Conclusions

- Unparalleled long-term robustness of a visual index compared to other indices now and in the future:
 - Cheap and simple measurements permanent reservoir of observers
 - Many data sources (no interruptions, cross-validation)
 - High resilience to changes in the social & political context (wars, budget cuts!)

Large educational and social impact:

- Easy to understand and part of public culture (songs, movies):
 Excellent support for communicating about solar physics and space weather
- Anyone can take part and contribute:
- Entry point for many amateur astronomers and scientific vocations.

