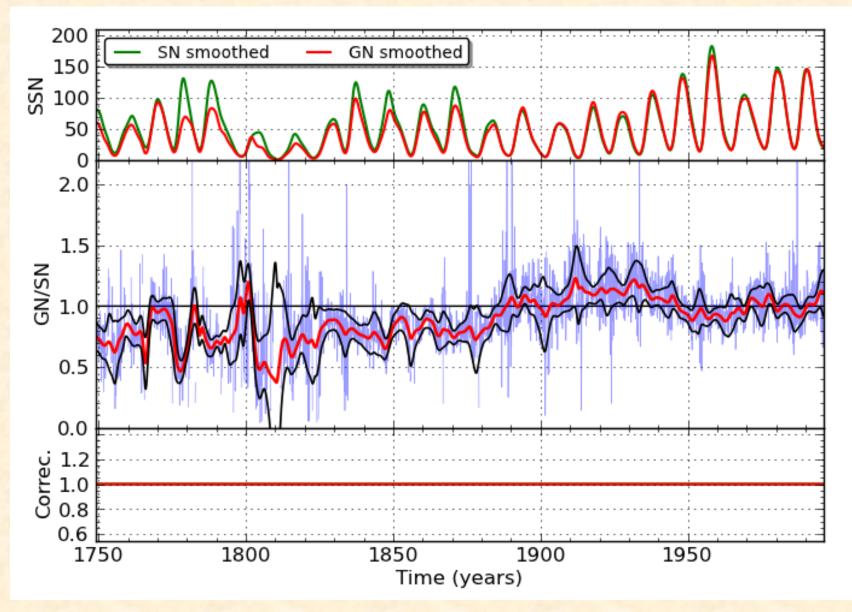


Assembling all corrections preview and specification

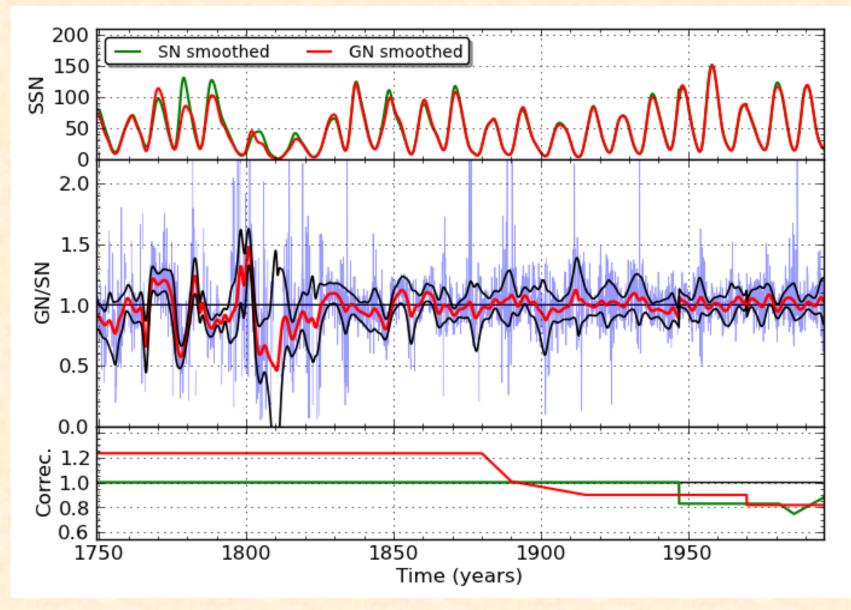
Frédéric Clette

SILSO: World Data Center – Sunspot Index Royal Observatory of Belgium

Objectives of the discussion

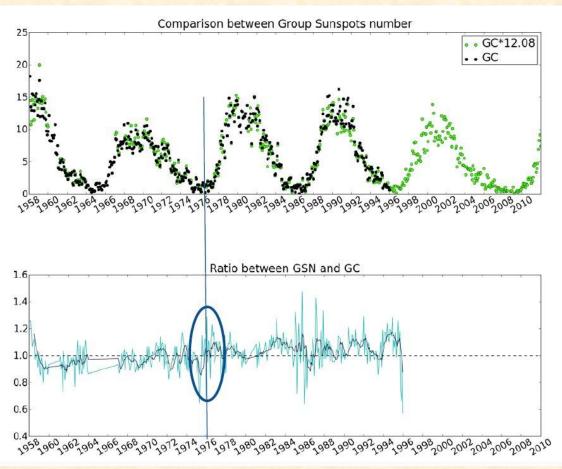

Preview the combined effect of corrections: simulation !

- Original SN and GN series multiplied by correction factors
- Schematic corrections: start/end dates, ratio (constant or linear ramp)
- Period : 1800 present
 - Last 200 years = essential part, as calibration is propagated backward in time
 - Most mature: 18th century « backbone » still in progress
- Current status:
 - Multiple corrections established separately
 - Estimates of a correction value and rough time intervals (« about »)
- What we need for publishing a revised SN series:
 - Final value of each correction, with a confidence interval (error bars)
 - Precise transitions
 - Combining corrections
 - Verifying the compatibility between corrections


Questions to be answered

- Which corrections must be and not be included?
- Refining the time of corrections
 - Exact start & end times
 - Step transition or progressive ramp ? Profile of the ramp? (linear, ...)
- *Refining the amplitude of corrections:*
 - What is the precision? +/- standard error
 - What is the accuracy? Acceptable range? Criterions for the upper/lower limits?
- Time resolution of correction: daily, monthly, yearly?
- Are corrections mutually compatible or contradictory?
- Remaining drifts and biases? Missing corrections?

Starting point: the original SN & GN series



All corrections

Reconstructed Group Number: 1975 jump

- Reconstruction and extension of the Group Number R_G up to 2012 (WDC – SILSO database):
 - Good overall match with original R_G
 - New R_G calculated from the same data set as R_i
- Comparison with original H&S R_G:
 - Ratio near 1.0
 - Jump around 1975 (transition from RGO to SOON data)
- R_G scale increased by ~10% after 1975

Wauters & Clette, SSN Workshop 2013

Cycle 23 anomalies: impact on the R_i / R_g ratio

- Changing R_i/R_G ratio:
 - Stable over cycles 19 to 22
 - Decline in cycle 23 and early part of cycle 24

Decrease of the average number of spots per group by ~30%

	IS 50	Cycle 20: SSN=12.2GSN 200 150 100 S 50
	0 0 2 4 6 8 10 12 14 16 GSN lisse GSN lisse Cycle 21: SSN=12.2GSN 100 55 50 100 100 100 100 100	0 0 2 4 6 8 10 12 14 16 GSN lisse GSN lisse 1989 1989 1989 1989 1989
	0 0 2 4 6 8 10 12 14 16 GSN lisse Cycle 23: SSN=11.6GSN 2000 150 0 2 2000 2 4 6 8 10 12 14 16 GSN lisse 2000 0 2 4 6 8 10 12 14 16 Cycle 23: SSN=11.6GSN 2000 0 2 10 10 10 10 10 10 10 10 10 10	Cycle 24: SSN=11.0GSN Cycle 24: SSN=11.0GSN
th 5 9 3	GSN lisse	14

Cycle	Ns/Ng	North	South	R_i/R_G	North	South
19	11.3			12.8		
20	10.3			12.2		
21	10.4			12.2		
22	11.9	12.5	10.7	13.2	13.5	12.5
23	9.3	9.5	8.7	11.6	11.5	11.9
24	8.5	8.7	6.4	11.0	11.2	10.3

4th Sunspot Number Workshop, Locarno

About error bars and uncertainties

An important distinction:

- Precision (standard deviation, standard error):
 - Random dispersion of observations (noise)
 - Established statistically
 - Requires multiple simultaneous observations

(« modern » part of the SN)

- Accuracy: (systematic errors, confidence interval)
 - Absolute scale of the measured quantity.
 - Based only on the knowledge of intrinsic factors of the measuring process
 - « Model » of the instrument and measuring process:
 - Combination of the influence of each instrumental factor established separately (physical model, laboratory tests, statistical regression study, etc.)

About error bars and uncertainties

- Which factors ?:
 - Human factors: vision (aging), subjective choices (small spots, group splitting)
 - Observing conditions: *telescope (aperture, magnification)*, seeing effects, projection (drawing) versus eyepiece image
 - Processing method and rules: <u>umbral splitting</u>, <u>sunspot weighting</u>, <u>k personal coefficients</u>
- The main accuracy factors are associated with the processing method (applied systematically to all observations)
- Most other factors lead to random noise (precision) as observations are done by independant uncorrelated observers, except for:
 - Smaller cruder telescopes (aperture <50-70mm), mainly before the 19th century
 - Change in group splitting practices (evolution of scientific knowledge)
 - Personal aging and telescope change when a single observer defines the global scale of the SN (mainly before the 19th century).

The 1880 RGO transition (GN)

- Size of correction:
- Transition:
 - Progressive ramp
 - Start time:
 - End time:
 - Correction profile vs time
- Correction function?
- Replacement by the backbone reconstruction?
 - Only yearly values?
 - Monthly values or interpolation?
 - Daily values
- Contribution of: L.Svalgaard, D.Hathaway + J.Vaquero ?

The Waldmeier 1947 transition (SN)

- Size of correction: function of SN, 1.1 to 1.3, avg. 1.2
- Transition:
 - Progressive ramp or sharp jump ? Sharp jump !
 - Start time: (near time of cycle 17-18 minimum): 1947, Jan. 1st
 - Correction profile vs time (function of SN): no, constant correction
- Correction factor?
 - Decreasing all values after the transition
 - Monthly values or interpolation?
 - Daily values
- Contribution of: L. Svalgaard, D.Hathaway

The RGO-SOON 1976 transition (GN)

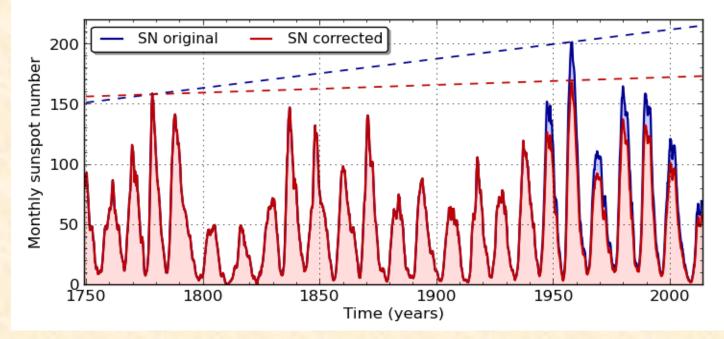
- Size of correction: ~9%
- Transition:
 - Sharp jump
 - Time: Dec 31, 1976 ? (cf. Hoyt & Schatten)
- To do: calculation of a GN from SILSO data
 - Determination of scale factor over 1976-1998
 - Replacement of H&S values by new GN values after 1976
 - Daily, monthly, yearly values
- Contribution of: F. Clette

The Specola drifts 1980-2014 (SN)

- Size of correction: multi-station average k over 1980-2014
- Transition:
 - Continuous variation (average k)
 - Start time: 1981
- Full recalculation of SN number with a new/corrected reference
 - Daily, monthly, yearly values
- Contribution of: F. Clette

The Specola drifts 1980-2014 (SN)

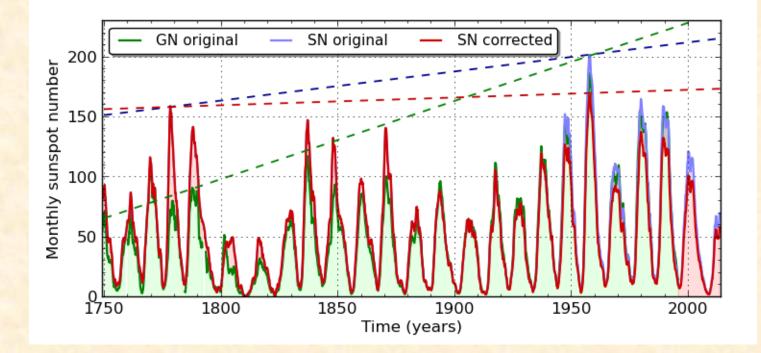
- Open questions:
 - Single station (Locarno, other) or multi-station reference ?
 - What is the optimal number of stations?
 - Many: more difficult to keep track of events at each stations
 - Few: limited statistical validation
 - How to combine stations?
 - Average of raw numbers without k scaling (implies stations with very similar k)
 - Maintenance of a restricted k coefficient system within the core group
 - Only professional observatories or also dedicated amateurs?
 - Should we avoid stations contributing also to the AAVSO network ?


More corrections

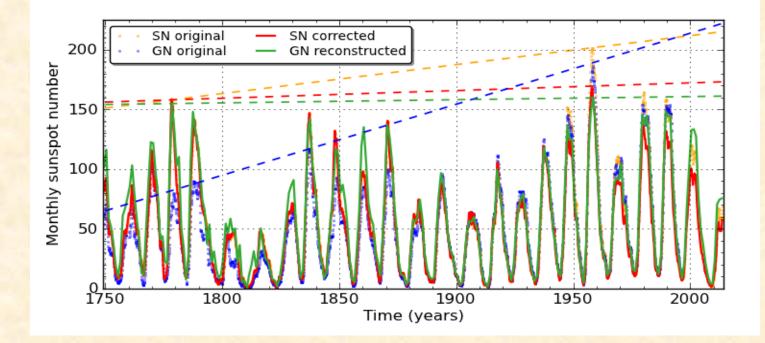
- Cycle 10 correction (GN and SN)
 - Valid correction (no full agreement with diurnal geomag. index)
 - Size of the correction: 1.25
 - Time interval Min to min
 - GN replaced by reconstructed GN?
 - Daily & monthly values? SN correction?
 - Contribution from: L.Svalgaard, R. Arlt
- Schwabe-Wolf transition (20%, SN)
 - No correction needed: due to misinterpretation of early Schwabe data.
 - Contribution from, L.Svalgaard, R. Arlt
- Cycle 5 correction (GN) ?
 - Better agreement between reconstructed GN and original SN
 - Correction by Wolfer needs to be verified
 - Large uncertainties: no correction of the SN is considered at this stage
 - Contribution from: L.Svalgaard (+ J.Vaquero, E.Cliver, R.Arlt)

Effect on long-term trends: SN series

Most fundamental consequence:

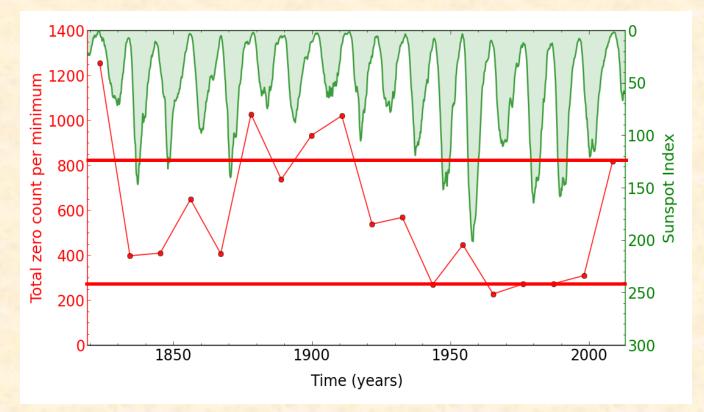

The rising trend in solar cycle maxima since the Maunder minimum almost vanishes.

• SN: Waldmeier weighting correction


Effect on long-term trends: SN & GN series

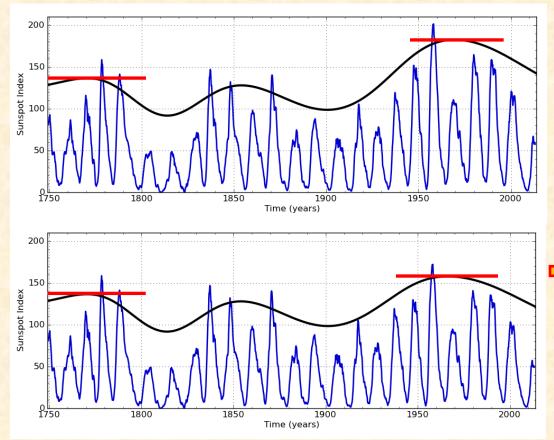
Group Number: large trend

Effect on long-term trends: reconstructed GN series


- Group Number : backbone reconstruction
 - Upward trend almost vanishes

Implies a fast recovery after the Maunder Minimum
But late 20th century may still be a peculiar episode

An alternate indicator: number of spotless days


- Strong anti-correlation with the cycle amplitude
- Cycle 23-24 minimum (~800 days): Similar to cycles 12 to 15

- Dalton minimum (1798-1822) :Spotless days count > 1200
- Last six minima: lowest spotless day counts ! (~250 days)

Long-term integration: a moderate Modern Maximum

- Time-integrated responses to the solar input:
 - Cosmogenic isotopes: deposition processes (ice, sediments)
 - Earth climate: thermal inertia of oceans
- Gaussian Running mean over 22 years (2 solar cycles):

Original series

Ratio Max cycles 3-19 = 1.27 Ratio 22-yr envelope = 1.30

Corrected series

Ratio Max cycles 3-19 = 1.08 Ratio 22-yr envelope = 1.17

The clustering of high solar cycles reduces the time-integrated effects of the corrections by 50%