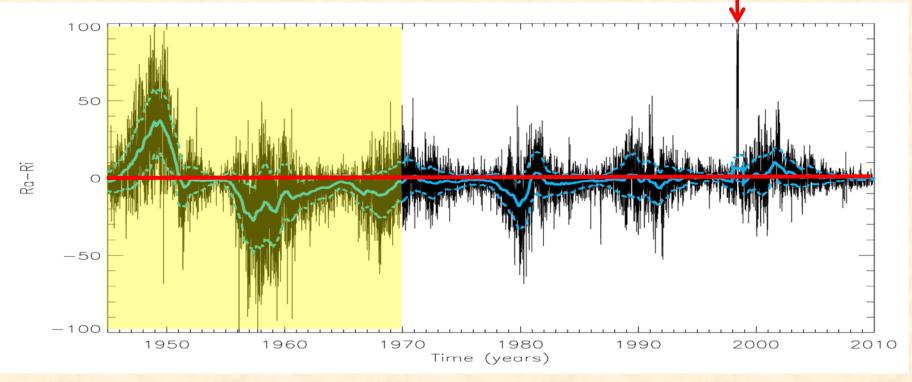
R_A versus R_i: a tell-tale comparison

Frédéric Clette

SIDC – WDS "Sunspot Index" Royal Observatory of Belgium

* **** ****

R_A: the closest equivalent to R_i


- Most solar activity indices or irradiances include a chromospheric or coronal component:
 - Different underlying physical and emission processes
 - Non-linear relations
 - Time delays

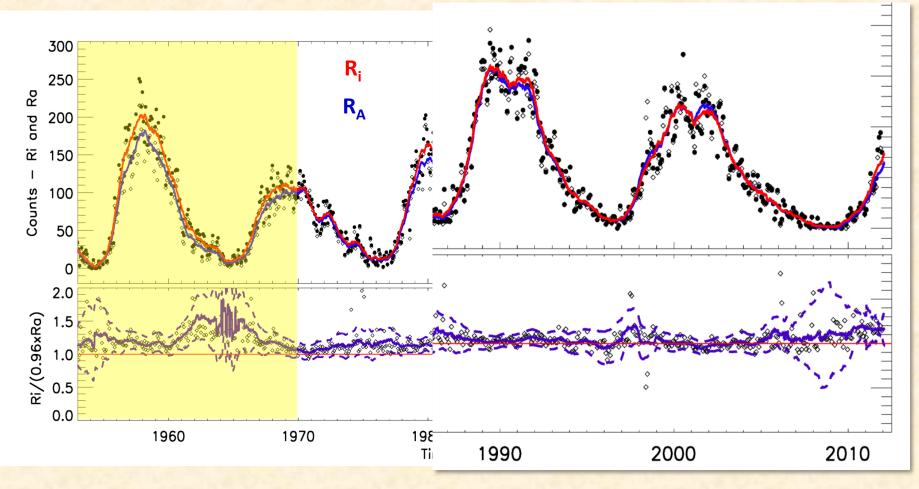
Too different to provide a full validation

- Multiple equivalences in the American sunspot number:
 - Visual sunspot count (Wolf formula)
 - Network of multiple stations (amateur-size instruments)
 - Statistical processing
 - NB: Few common stations with the SIDC network (<~ 15%)
- But different processing method:
 - True "floating" network average (K coefficients relative to network average)
 - <u>No pilot station</u>

R_A- R_i differences over 6 decades (daily values)

- Dispersion: 10 to 5% rms outside cycle minima
- Main deviations:
 - Early period 1945 1970 (up to 35%): flaws in the processing method
 - Large "glitch" in August 1998: transition to a new corrected processing ?

An essential step: the processing method


- Focus on the observations (subjectivity, etc.) and the network
- Critical aspects in the American number R_A (AAVSO):
 - No reference station, manual processing, additional observer rating factor
- Flaws in the processing method: found after 50 years
- Original data lost before 1992 No backward correction possible

The Golden rules

- 1. Archival of all raw input data
- 2. Detailed documentation of the processing method and definitions and of the observing technique
- 3. Tracking of processing changes
- 4. Change only when it is essential (e.g. discovery of a flaw)
- 5. Long overlap periods:

old and new indices computed in parallel (min. one solar cycle)

R_i/R_A ratio over 6 decades (monthly averages)

- Average ratio R_i/R_A close to 1: $R_i/R_A = 0.96$ over cycles 22 & 23
- No significant deviation over the entire declining phase of cycle 23.

Apr. 27, 2012

* ***** ****

Conclusion

- Two largely equivalent and independent series
- The 70-year long comparison shows:
 - A tight match, in particular over the last 30 years
 - The absence of any significant long-term trend
 - No deviation during cycle 23 (declining phase, after 2000)
- The future: importance of continuing the R_A series
 - R_A is gaining value as the length of the series increases
 - Increases the mutual robustness of the R_i and R_A indices by providing an independent reference.
- New exchanges of know-how since 2010:
 - Comparison of methods and practices (no cross-contamination!)
 - Exchanges of data management tools (data import, database, quality control) for modernizing the production of the index.