

2nd Sunspot Number Workshop SIDC, ROB, Brussels, 21-25 May 2012

Workshop Summary / Discussion

Norma B. Crosby

BIRA-IASB

Ave. Circulaire 3

B-1180 Brussels

COMESEP [COronal Mass Ejections and Solar Energetic Particles]: forecasting the space weather impact

Project Coordinator: Norma B. Crosby

http://www.comesep.eu/

WP3: SOLAR ENERGETIC PARTICLES

- Enhance our understanding of the source of SEP events and acceleration processes, as well as SEP propagation.
- Advance SEP modelling to include CME propagation effects, cross-field diffusion and heavy ions.

[Leif Svalgaard, Comparative Magnetic Minima: characterizing quiet times in the Sun and stars Proceedings, IAU Symposium No. 286, 2012]

World Sunspot Number (Wolf Sunspot Number = Zurich Sunspot Number = International Sunspot Number)

Group Sunspot Number (based solely on the number of sunspot groups)

- Overestimation during solar min.
- Underestimation during solar max.

COMPARING METHODS

aeronomie · be

[Leif Svalgaard, Comparative Magnetic Minima: characterizing quiet times in the Sun and stars Proceedings, IAU Symposium No. 286, 2012]

- Has solar activity changed or not changed during the last centuries?
- Corrected / non-corrected data
- Weighting / no weighting.

200

180

160

140

120

100

THE PAST

Defining a sunspot; variations between stations/ observers may be caused by:

- <u>Detector characteristics</u> (calibration, spatial resolution, ...)
- Objective factors (latitude, seeing weather conditions, solar min./max., GCRs - cosmogenic isotopes, Earth's magnetic field (tilt, seasons), geomagnetic indices, CO₂ concentration ?, ...)
- <u>Subjective factors</u> (each observer has their own observing routine, eyesight changes with time, "sunspot location on disk hemispheric variation" ...) are biased.

THE PAST – cont.

What are good proxies for correlation studies?

- Direct measurements: F10.7 cm, Ca II K-line,
- Indirect measurements: Kp-indices (5 or greater indicate storm-level geomagnetic activity), ... [errors accumulate]

Correlations seem to get better for longer periods of time averaging (=> bias?).

THE PAST – cont.

Wolf could not see groups of Zurich classes A and B [=> spatial resolution constraint]

- Pores vs. the smallest sunspot [will higher spatial resolution observations show smaller sunspots in the future?]
- Bright points in X-rays.

For the datasets should "-99" or "0" be used?

THE FUTURE

International standardization of the World Sunspot Number and Group Sunspot Number

Harmonization!

Why?

- ground-based observations (problems will not disappear)
- space-based observations (huge quantities of data!)

An automatic procedure – the way forward:

- Optimize methods used on past data to develop one common method [important to document procedure]
- Use good proxies for sunspots (F10.7 cm, Ca II K-line, ...)
 for the optimization
- Inter-disciplinary approach.

