Sunspot data analysis using coherency

with special thanks to Laure Lefèvre and Fédéric Clette

- A., A

This work was supported by the FP7 SOTERIA and ATMOP projects

T. Dudok de Wit (Sacramento Peak, Sept. 2011)

2 questions

Data gaps are omnipresent in sunspot records :
Fill them self-consistently to have unbiased statistics ?

All solar proxies exhibit the same dynamics :

Do the International & Group sunspot numbers really describe the same physics ?

How are they related to other solar proxies ?

Raw sunspot data

amplitude

3

What we would like to have

What we would like to have

reconstructed data

Assumption: all records describe the same observable

Add first order correction to account for discrepancies

$$SSN(t,k) = S_0(k) + A_1(t) \cdot S_1(k) + A_2(t) \cdot S_2(k)$$

Add more higher order (= small) corrections if needed

$$SSN(t,k) = S_0(k) + \sum_i A_i(t) \cdot S_i(k)$$

$$SSN(t,k) = S_0(k) + \sum_i A_i(t) \cdot S_i(k)$$

- The amplitudes A_i(t) and sources S_i(k) are estimated by Singular Value Decomposition (SVD)
 - similar to principal component analysis
- Data gaps are filled by using the first dominant terms
 - this is done iteratively, see [Dudok de Wit, A&A 533 (2011)]
 - a multiscale approach is used
 - validation by bootstrapping

$$SSN(t,k) = S_0(k) + \sum_i A_i(t) \cdot S_i(k)$$

- The amplitudes A_i(t) and sources S_i(k) are estimated by Singular Value Decomposition (SVD)
 - similar to principal component analysis
- Data gaps are filled by using the first dominant terms
 - this is done iteratively, see [Dudok de Wit, A&A 533 (2011)]
 - a multiscale approach is used
 - validation by bootstrapping

Gaps are filled while ensuring that their statistical properties vs all the other variables remain unaffected

The dominant source terms

$$SSN(t,k) = S_0(k) + \sum_i A_i(t) \cdot S_i(k)$$

Residual error for each station

Residual error for each station

root mean square error

Can't we find a more global representation of all this ?

Similarity map

scale=32 days

Similarity map

scale > 256 days

Comparing the Group SN and the International SN

All solar proxies exhibit strong similarities

All solar proxies exhibit strong similarities

T. D

Method

We use the same method as before, see [Dudok de Wit et al., GRL 36 (2009)]

- All proxies are displayed on a 2D map so that their distance reflects their similarity
 - done separately for each time scale (rotational/cycle)

Similarity map: solar rotation scales

scale=32 days

Similarity map: solar rotation scales

Similarity map: solar cycle scales

Similarity map: solar cycle scales

Conclusions

- Focus on commonalities (or discrepancies) between different stations/proxies
- The ISN and GSN do not describe the same physics as other solar proxies
- The similarity between these proxies is scale-dependent
 - good agreement on medium time-scales does not imply good agreement on long time-scales!
- Multi-wavelength radio observations are a boon

Smoothed sunspot numbers

