

TunsBot Dumbers (TBD)

Thierry Dudok de Wit University of Orléans

with thanks to M. Pick, S. Moussaoui, P.-O. Amblard, L. Vieira, and many more

Sunspot numbers: what their statistical properties tell us

Thierry Dudok de Wit University of Orléans

with thanks to M. Pick, S. Moussaoui, P.-O. Amblard, L. Vieira, and many more

Outline

- 1. Separating Wolf sunspot numbers from Group sunspot numbers
- 2. What multi-wavelength radio observations tell us about the variability of the sunspot number

3

My favourite motto

We use fantastic telescopes, the best physical models and the best computers. The weak link in this chain is interpreting our data using 100-year-old mathematics.

Dana McKenzie, New Scientist, 2004.

Separating groups and spots

We know that

 $\begin{array}{ll} \mbox{Group Sunspot Number} & GSN = N_{\rm groups} \\ \mbox{Wolf Sunspot Number} & ISN = \alpha N_{\rm groups} + \beta N_{\rm spots} \end{array}$

Does that mean that the number of spots can be estimated by taking the difference

$$N_{\rm spots} = \gamma \cdot ISN - \delta \cdot GSN$$
 ?

No ! because this may lead to irrealistic (negative) values

5

Brussels 25/5/2012

known !

We need physical constraints to obtain a unique solution

"Cocktail party problem"

"Cocktail party problem"

"Cocktail party problem"

Assumptions

Our basic assumptions are

the combination of the sources x and y is linear and instantaneous

the sources are **positive** and so is their mixture

the sources are **different**

Our approach

Advantages

- a consistent method for extracting information from imperfect data
- need to specify assumptions explicitly

Disadvantages

- can be computationally expensive
- people tend to be scared by the word "Bayes"

Part II

Blind source separation with synoptic radio observations

Radio observations

The radio flux from 3-30 cm is a mix of free-free emission (plages) and gyroemission (sunspots)

60 years of daily observations from Toyokawa & Nobeyama

Questions

Question 1 : can we separate the Bremsstrahlung and the gyroresonance emissions ? Two different "sources" ?

Question 2: How do they relate to the sunspot numbers?

beware : long term calibration is a problem, so we focus on solar rotation scales (<< 100 days)

How many "sources" ?

There is no unique answer to that question.

However, a SVD (Singular Value Decomposition) analysis and deeper inspection suggests that 3 sources are at play

the data contain 3 degree of freedom

Conclusions

This approach is statistical and empirical

and yet

It gives new insight into the different contributions of solar variability

first full separation between group and Wolf sunspot numbers

- possibility to reconstruct various solar proxies from multi-wavelength radio observations (in particular MgII index)
- the "gyro-resonance" contribution is much stronger in sunspots than it is in the radio flux
- the Group and Wolf sunspot number DO capture different physics