$R_i = 159^{+42}_{-37}$

T. Dudok de Wit LPC2E, University of Orléans, France

With thanks to Micha Schöll and the SOLID team

Outline

- Realistic confidence intervals are hard to get
- What do we mean by "confidence interval"?
- How can we estimate them ?
 - short-term variations: ok
 - long-term variations: some ideas
- What do they tell us about the underlying physics?

Example: Total Solar Irradiance

TSI measurements agree on variability, but not on absolute value

Example: Total Solar Irradiance

Scientists disagree on the level of uncertainty!

Different uncertainties

Here

confidence interval = degree of belief (≠ error)

- Different contributions
 - random fluctuations in the emergence of sunspots (Poisson)
 - errors in counting the number of sunspots (~Gamma)
 - averaging over various observers (~Gaussian)
 - discretisation error (uniform)
 - systematic errors
 - etc.

Different uncertainties

■ We may expect the uncertainties to be some mix

What do they tell us about the data?

How do we estimate these \$!@##! uncertainties?

Estimating uncertainties

- Several approaches for determining uncertainties
- 1. Take daily differences
- 2. Use power spectral density
- 3. Use another proxy
- 4. Model the dynamics of the SSN
- 5. ..

Estimating uncertainties (I)

- Assume fluctuations = white noise, and that the SSN is band-limited
 - → consider day-to-day differences as "noise"

see talk by David Hathaway

Estimating uncertainties (2)

- \blacksquare Assume fluctuations = white noise, and that the SSN is band-limited
 - → look for noise floor in power spectral density

Estimating uncertainties (3)

Use other proxies to reconstruct the SSN and look at

residual error = SSN - proxy fit

Estimating uncertainties (3)

■ Example: multiscale reconstruction of the SSN with a linear combination of four radio fluxes (8, 10.7, 15, 30 cm)

SSN (6-month average)

residual error

residual error (6-month average)

Estimating uncertainties (4)

We use a more pragmatic definition

Residual error = amount by which today's SSN departs from the value predicted by dynamical system model of the SSN (using past observations)

Estimating uncertainties (4)

We describe the dynamics of the SSN by using a linear autoregressive (AR) model
residual error

$$SSN[k+1] = a_0SSN[k] + a_1SSN[k-1] + \dots + a_pSSN[k-p] + \epsilon[k+1]$$

tomorrow's value

today's value

- Various criteria indicate that the optimal model order is p = 6 16
- Beware
 - this model has assumptions: linearity, stationarity, ... which are not verified
 - there are better models around: NARMA, etc.

AR model

Typically, we find for an 6th order model

```
SSN[k+1] = 0.9370 \ SSN[k] \ + 0.0553 \ SSN[k-1] \ - 0.0140 \ SSN[k-2] \ - 0.0019 \ SSN[k-3] \ - 0.0183 \ SSN[k-4] \ - 0.0150 \ SSN[k-5] \ + 0.0510 \ SSN[k-6] \ + \epsilon[k+1]
```

From these coefficients, we can estimate the power spectral density

The AR model properly describes the dynamics on time scales < few months

Residuals from the AR model

Residual error from 16th order AR model, applied to ISN (excerpt)

Residuals from the AR model

Residual error from 16th order model, applied to ISN

18

Residuals from the AR model

- Standard deviation of residual is
 - cycle-dependent : smaller for recent cycles
 - lacksquare scales approximately as $\sigma_\epsilon \propto \sqrt{SSN}$ lacksquare Poisson-like
 - same for group sunspot number

Variance stabiliation

It is essential to stabilize the variance in order to be able to proceed → make residual errors stationary in time

Apply the Anscombe transform : If SSN is a mix of Poisson + Gaussian random variables

$$y = \alpha \mathcal{P}(SSN) + \mathcal{N}(\mu, \sigma^2)$$

then

$$y^* = \frac{2}{\alpha} \sqrt{\alpha y + \frac{3}{8}\alpha^2 + \sigma^2}$$

behaves like a Gaussian variable with

$$y^* \sim \mathcal{N}(\mu', \sigma^2 = 1)$$

Variance stabilisation

Interpretation of the Anscombe transform : if we replace the SSN by

$$SSN^* = 2\sqrt{\frac{SSN}{2.3} + \frac{3}{8}}$$

Then the new sunspot number will have a constant and unit variance → SSN* is now stationary and Gaussian!

Thanks to the Anscombe transform, all classical analysis tools can again be used

The Anscombe transform tells us that SSN/2.3 (and not SSN) behaves like a Poisson process

Variance stabilisation

The variance has now been stabilized

Variance stabilisation

Key questions

- How do the GSN and SSN compare ?
- What does the relative contribution of Poisson/Gaussian fluctuations tell us?
- Can we estimate them ?

GSN versus SSN

- The errors on the GSN and SSN evolve in different ways
 - the error on the GSN is not as small as expected (averaging effect ?)
 - data collection effects are important

24

What are the best parameters?

Rough estimate of the amplification factor α and the additional error σ

Intermediate conclusion

Intermediate conclusion

- The uncertainties on the SSN are not stationary in time
 - most linear regressions with the SSN are flawed because they give too much weight to large values
 - use the Anscombe transform to stabilize the variance

Intermediate conclusion

- The uncertainties on the SSN are not stationary in time
 - most linear regressions with the SSN are flawed because they give too much weight to large values
 - use the Anscombe transform to stabilize the variance

- The Anscombe has several advantages
 - the SSN behaves like a mix of Poisson and Gaussian processes

$$SSN \approx 2.3 \ \mathcal{P}(SSN_{true}) + \mathcal{N}(0, \sigma^2 \approx 25)$$

- we now have a sound estimate for the confidence intervals
- these coefficients change over time

What flaws?

Flaws in linear regression: example

■ What is the ratio between two observers?

$$c = 1.006 \pm 0.022$$

obtained by simple leastsquares fit, ignoring errors on A and B

Flaws in linear regression: example

■ The same, with error confidence intervals for both

Old value

 $c = 1.006 \pm 0.022$

New value

 $c = 0.950 \pm 0.044$

Flaws in linear regression: example

Probability distributions of the slope c differ because the second model includes uncertainties on the observations

Great care is needed when making linear regressions with noisy data!

What about long time scales?

Long time scales

- Uncertainties for long time scales are challenging!
- But there are some sanity checks
 - use the Butterfly diagram

■ The number of sunspots AND their location are crucial for understanding the variability of the dynamo (and the SSN)

■ Most of the dynamics is captured by 2 degrees of freedom → "high latitude" mode & "low latitude" mode

4th sunspot workshop Occamo / 155 2014 tified by Bayesian positive source separation

■ The latitudinal distribution of the 2 modes

Area
$$(t, \theta) = \sum_{k=1,2} \text{mode}_k(t) g_k(\theta)$$

Sanity check: Reconstruction of the butterfly diagram with 2 modes

Area
$$(t, \theta) = \sum_{k=1,2} \text{mode}_k(t) g_k(\theta)$$

1940

year

1960

Observed

Reconstructed

2000

1980

60

90

1880

1900

1920

Plot mode 1 versus mode 2 ("phase space plot") = very condensed representation

What the phase space actually looks like

Two solar cycles are similar if their trajectories overlap here

The latest cycle is similar to the one of 1878-1888, not only in SSN, but ALSO in latitudinal distribution

we are here

Sanity check

Now extend this approach backward in time, using the data from from Schwabe [courtesy Rainer Arlt]

Sanity check

Butterfly diagram: Greenwich + Schwabe

Sanity check

Schwabe's orbits completely differ from the ones from Greenwich = very unlikely to be due to the Sun

Conclusions

- The phase space representation offers lots of interesting directions to explore
 - most of the Butterfly diagram captured by just 2 proxies
 - criteria for predicting the shape and amplitude of the solar cycle
 - gives robust criteria for defining the onset of a cycle
 - and much more...
- Reveals biases in the Butterfly diagram, which are not readily visible by eye.
 - Most likely multiple counting of the same active regions

Overall conclusions

- Confidence intervals are essential
 - for doing proper statistics
 - for giving deeper insight into the processing of the data