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Outline

B Realistic confidence intervals are hard to get

B What do we mean by ‘confidence interval”?
® How can we estimate them 7

B short-term variations: ok

B [ong-term variations: some ideas

B What do they tell us about the underlying physics ?
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Example : Total Solar Irradiance

B TSI measurements agree on variability,
but not on absolute value
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Example : Total Solar Irradiance

B Scientists disagree on the level of uncertainty |

>2 orders of

maghnitude !
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Different uncertainties

B Here

confidence interval = degree of belief (# error)

| Different contributions

random fluctuations in the emergence of sunspots (Poisson)
errors in counting the number of sunspots (~Gamma)
averaging over various observers (~ Gaussian)

discretisation error (uniform)

systematic errors

etc.
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Different uncertainties

B We may expect the uncertainties to be some mix

residual error

SSNobs — SSNtrue + P SSNtrue =+ N ,LL,

B G S

B What do they tell us about the data 7
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How do we estimate these $!@##!
uncertainties ?



Estimating uncertainties

B Several approaches for determining uncertainties

Take daily differences

Use power spectral density

Use another proxy
Model the dynamics of the SSN

o & W
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Estimating uncertainties (1)

B Assume fluctuations = white noise, and that the SSN is

band-limited
— consider day-to-day differences as “noise”

Variations in Monthly R,

Plotting the RMS variation of the 13 monthly values in the 13-month
running mean of R, since 1749 shows a good fit (albeit with substantial
scatter) to 2.1 VR, .

see talk by David
Hathaway
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Estimating uncertainties (2)

B Assume fluctuations = white noise, and that the SSN is
band-limited

— |look for noise floor in power spectral density

105_.......'.....!...L..!..!..!.!..!.I........!....!...!..'..!.!..!.!.l ....... L. !...!...!..!..!.!.,'E
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Estimating uncertainties (3)

B Use other proxies to reconstruct the SSN and look at

residual error = SSN - proxy fit

11
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Estimating uncertainties (3)

B Example : multiscale reconstruction of the SSN with a
linear combination of four radio fluxes (8, 10.7, 15, 30

cm)
200
150+
100 SSN (6-month
_ average)
7 |
n residual error

w |
r i '”l'u“

residual error (6-
month average)
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Estimating uncertainties (4)

B We use a more pragmatic definition

Residual error = amount by which today’s
SSN departs from the value predicted by
dynamical system model of the SSN
(using past observations)

————
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Estimating uncertainties (4)

B We describe the dynamics of the SSN by using a linear

autoregressive (AR) model

SSNk+ 1] =apSSN|k] +a1SSNk — 1|+ ---+a,SSN|k — p] + €|k + 1]

tomorrow’s value today’s value

B Various criteria indicate that the optimal model order is
p=06-16

B Beware

B this model has assumptions: linearity, stationarity, ... which are
not verified

B there are better models around: NARMA, etc.
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4th sunspot workshop / Locarno / 05/2014



AR model

| Typically, we find for an 6th order model

= 0.9370 SSN|
+ 0.0553 SSN|
— 0.0140 SSN|
— 0.0019 SSN|
— 0.0183 SSN|
— 0.0150 SSN|
+ 0.0510 SSN|

+  €lk+ 1]

SSN[k + 1]

|

|
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AR model

B From these coefficients, we can estimate the power
spectral density
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The AR model properly describes the
dynamics on time scales < few months 16
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Residuals from the AR model

B Residual error from 16th order AR model, applied to ISN

(excerpt)
200 |
——residuals
—— Oobserved ﬂ
150 — — -model fit

o [ i J\/
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-50
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Residuals from the AR model

B Residual error from 16th order model, applied to ISN

250
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100}

SSN

4th sunspot work:

501

Residual errors are non-stationary
(heteroscedastic) and non-Gaussian: beware!
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Residuals from the AR model

B Standarc

deviation of residual is

B cycle-dependent : smaller for recent cycles

0e X VSSN = Poisson-like

B same for group sunspot number

M scales approximately as

6-month average

standard devn of residuals
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Variance stabiliation

B It is essential to stabilize the
variance in order to be able to

proceed = make residual
errors stationary in time

vf*l”“m

. .‘

f* n 'W

825 1850 1875 1900 1925 1950 1975 2000
year

m Apply the Anscombe transform : If SSN is a mix of
Poisson + Gaussian random variables

y = aP(SSN) + N (p,0°)

th
en B :
Y = —\/ay+ —a? + g?

Qo 8
behaves like a Gaussian variable with ¥~ ~ N(M/aUQ = 1)
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Variance stabilisation

B Interpretation of the Anscombe transform : if we replace

the SSN by S
s T3
2.3 8

Then the new sunspot number will have a constant and
unit variance = SSN* is now stationary and Gaussian!

Thanks to the Anscombe transform, all
classical analysis tools can again be used

The Anscombe transform tells us that SSN /2.3
(and not SSN) behaves like a Poisson process

21
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Variance stabilisation

variance has now been stabilized

residual error for SSN”

8 |

—— resudual err
8- —— SSN/30

i

SSN*

almost cycle
independent

1825 1850 1875 1900 1925 1950 1975 2000
year
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Variance stabilisation

——resudual err
6l —— SSN/30

SSN*

1825 1850 1875 1900 1925 1950 1975 2000
year

B Key questions
® How do the GSN and SSN compare 7

B What does the relative contribution of Poisson/Gaussian
fluctuations tell us 7

B Can we estimate them ?
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GSN versus SSN

B The errors on the GSN and SSN evolve in different ways

B the error on the GSN is not as small as expected
(averaging effect 7)

B data collection effects are important
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What are the best parameters?

B Rough estimate of the amplification factor oo and the
additional error o

o SSN* = aP(SSN) + N(0, 0?)
[ | | 1 1 1

H

O -i I I I I I I I
1800 1825 1850 1875 1900 1925 1950 1975 2000 2025
year

Schwabe Wolf Wolfer/Br Waldm. SIDC
a=7 a=55 a=3.5 a=23 a=2.3
o=7 o=6 o=06 o=5 o=5
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Intermediate conclusion



Intermediate conclusion

B The uncertainties on the SSN are not stationary in time

B most linear regressions with the SSN are flawed because they give
too much weight to large values

B use the Anscombe transform to stabilize the variance

27
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Intermediate conclusion

B The uncertainties on the SSN are not stationary in time

B most linear regressions with the SSN are flawed because they give
too much weight to large values

B use the Anscombe transform to stabilize the variance

B The Anscombe has several advantages

B the SSN behaves like a mix of Poisson and Gaussian processes
SSN ~ 2.3 P(SSNipue) + N(0,0° = 25)

B we now have a sound estimate for the confidence intervals

B these coefficients change over time

28
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What flaws ?



B \What is the ratio between two observers 7

SSN (Observer B)

| | -
: A A /
: -+ : .
: : o
: : :/
150t o o ;4 ..........
| 4
: -+ y
: : /
i +-]1-i /
| L A
100 54..4+++...+./5./++4++ ....................
| A+
| + o+
: 1y :
ot
+-F|‘ 4 :I:
S
Yy F
................. 0
50 4+
+¥
+ + + +
*
ot
+
4 : : :
O + 1 1 1
0 50 100 150

4th sunspot workshop / Locarno / 05/2014

SSN (Observer A)

c=1.006 +0.022

obtained by simple least-
squares fit, ignoring errors
on Aand B
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laws in linear regression: example

M The same, with error confidence intervals for both

Old value
5 5 ¢ =1.006 * 0.022
150 ................. ................. .
M New value
O . ,
> z e f = 0.950 + 0.
8)) 100 ................. ..... : . 7==.=;;§'i- .......... ] C O 950 O 044
O : iitim B :
o) e
Z =
0p) t
7)) 50+ et
”Iil -
Ziii
7] . . .
O + L L L
0 50 100 150

SSN (Observer A)
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laws in linear regression: example

B Probability distributions of the slope c differ because the
second model includes uncertainties on the observations

20

15

10

pdf(c)
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Great care is
needed when making
linear regressions

with noisy data !
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What about long time scales ?



Long time scales

® Uncertainties for long time scales are challenging |

B But there are some sanity checks
B use the Butterfly diagram

34
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Butterfly diagram

B The number of sunspots AND their location are crucial

for understanding the variability of the dynamo (and the
SSN)

6—month average
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Butterfly diagram

B Most of the dynamics is captured by 2 degrees of freedom
— “high latitude” mode & “low latitude” mode

6-—month average
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Butterfly diagram

B The latitudinal distribution of the 2 modes
Area(t,0) = Z modey (t) gi(0)

k=1,2
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Butterfly diagram

B Sanity check: Reconstruction of the butterfly diagram
with 2 modes

Area(t,0) = »  mode(t) gi(6)

o abestRRbetiay
i
g_zg: '.' ********* "F' FF"'F"" ***** Reconstructed

0
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Butterfly diagram

m Plot mode 1 versus mode 2 (“phase space plot")
= very condensed representation
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Butterfly diagram

35 — — L T T T T T

Two solar cycles
are similar if their

trajectories
overlap here

-l
6)]

low latitude mode
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0 0.5 1 1.5 2 2.5 3 3.5
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Butterfly diagram

The latest cycle is
similar to the one of

1878-1888, not only In

SSN, but ALSO In
latitudinal distribution

we are here
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Sanity check

B Now extend this approach backward in time, using the
data from from Schwabe [courtesy Rainer Arlt]
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Sanity check

B Butterfly diagram: Greenwich 4+ Schwabe

1-year average of daily sunspot area

Greenwich
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Sanity check

B Schwabe's orbits completely differ from the ones from
Greenwich = very unlikely to be due to the Sun

with Schbe’s data
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Conclusions

B The phase space representation offers lots of
interesting directions to explore

B most of the Butterfly diagram captured by just 2 proxies
B criteria for predicting the shape and amplitude of the solar cycle
B gives robust criteria for defining the onset of a cycle

® and much more...

B Reveals biases in the Butterfly diagram, which are not
readily visible by eye.

B Most likely multiple counting of the same active regions
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Overall conclusions

B Confidence intervals are essential

B for doing proper statistics
B for giving deeper insight into the processing of the data
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