

Sunspot Area Measurements from Debrecen

Testing the Sunspot Number with Detailed Datasets

András LUDMÁNY, Judit MURAKÖZY

and the Debrecen team: Tünde BARANYI, Lajos GYŐRI, Marianna KORSÓS, Norbert GYENGE

Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences Heliophysical Observatory, Debrecen, Hungary

Possible checking of hidden trends in the sunspot number dataset by means of detailed sunspot datasets containing information on individual spots.

- GPR Greenwich Photoheliographic Results, 1874-1976 spots only for three decades (in printed form)
- Kislovodsk sunspot dataset (not used here),
- DPD Debrecen Photoheliographic Data, since 1977
- SDD SOHO/MDI-Debrecen sunspot Data (1996-2010)
- Historical solar images

Next slides: brief introductions of these datasets

Debrecen Photoheliographic Data

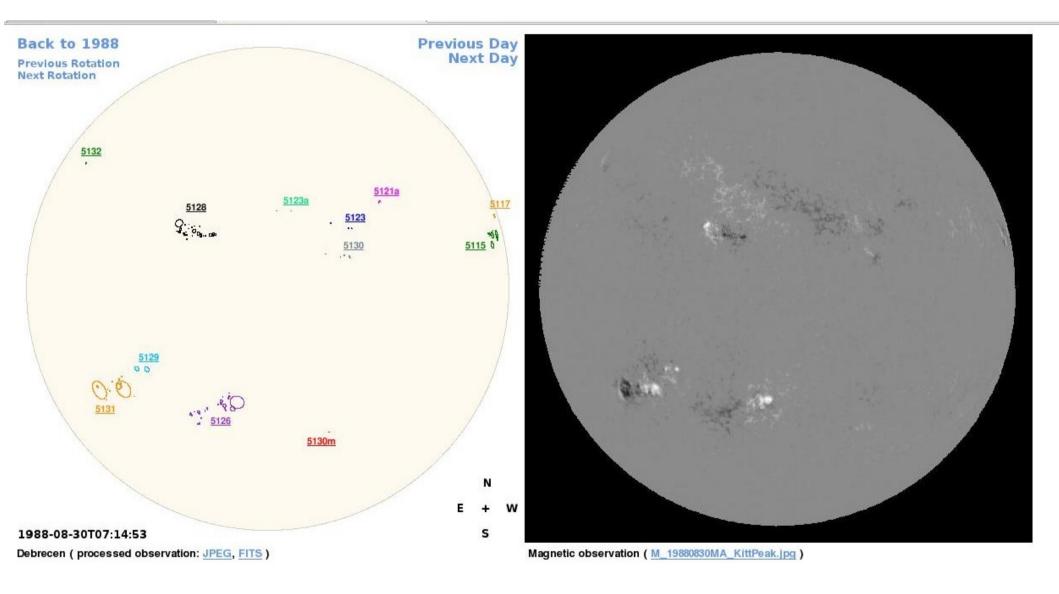
Győri, L., Baranyi, T., Ludmány, A.

If the DPD data are used in any publications, please refer to this paper: Győri, L., Baranyi, T., Ludmány, A., Photospheric data programs at the Debrecen Observatory, Proc. IAU Symp., 273, 403-407, 2011.

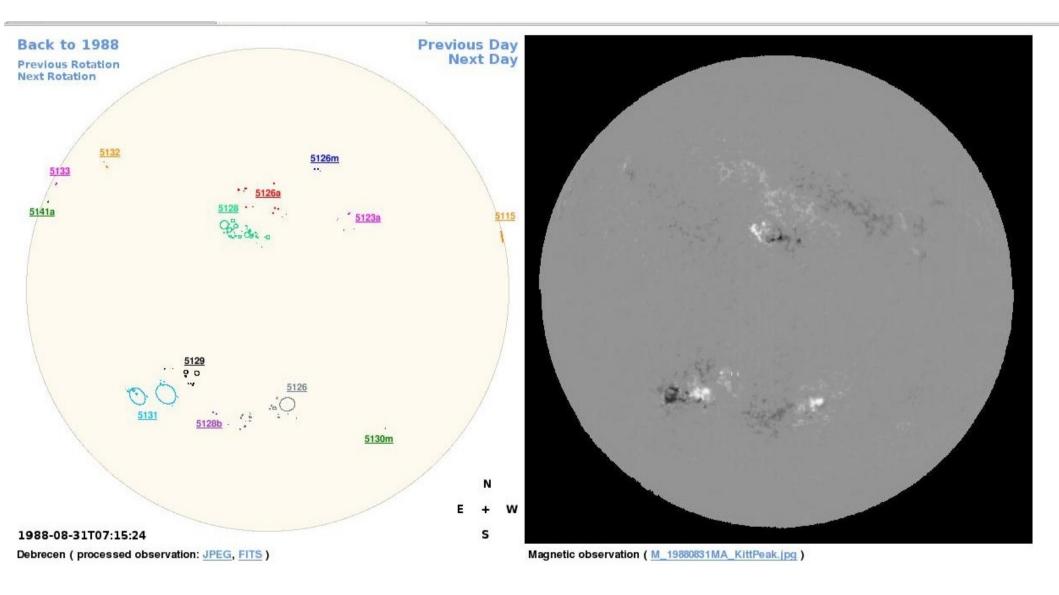
1. Introduction

The Debrecen Photoheliographic Data (DPD) sunspot catalogue is compiled as a continuation of Greenwich Photoheliographic Results (GPR). This program has been commissioned by the International Astronomical Union. The basic data in a sunspot catalogue are the heliographic positions and the areas of the sunspots. The data are supplemented with images of sunspot groups, scans of full-disk white-light observations, and magnetic observations as well as their user-friendly HTML presentation. The catalogue is mainly based on our own (Debrecen and Gyula) full-disk white-light observations but gaps in this time series are filled by solar images from <u>other observatories</u>.

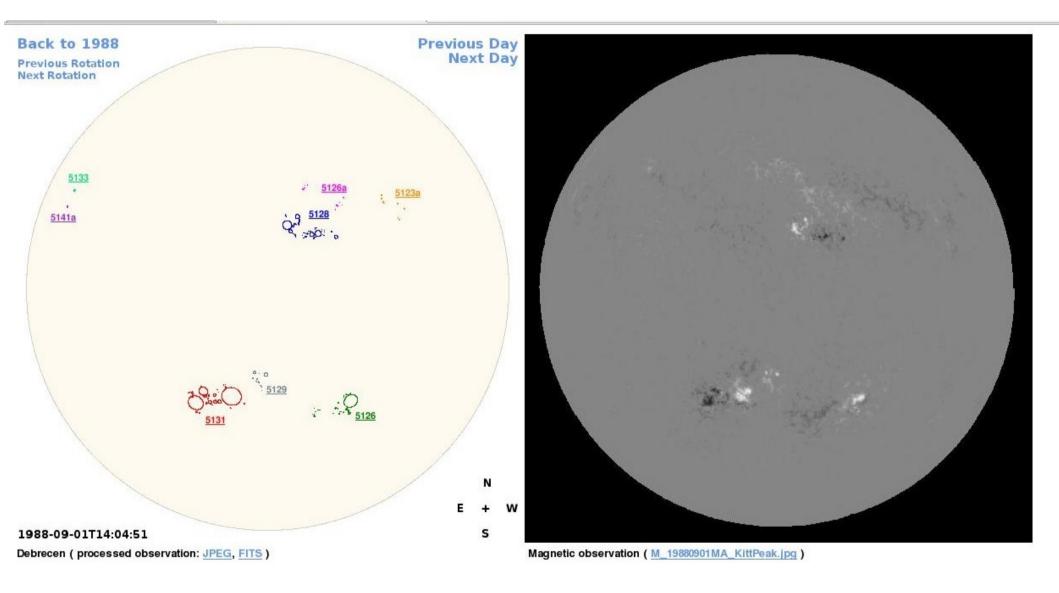
Description of the data: DPDformat.txt and README.txt.


Sunspot data and images of DPD are now available for the following years (with its status and the date of the last modification) (see also the Table of data availability):

				in progrees	in progress	in progress	1977 preliminary incomplete 2012-05-23	1978 preliminary incomplete 2012-03-14	1979 preliminary incomplete 20 1 -01-04
1980 preliminary incomplete 2012-06-01	1981 preliminary incomplete 2011-04-10	1982 preliminary incomplete 2012-06-04	1983 preliminary incomplete 2012-06-06	1984 preliminary incomplete 2012-05-29	1985 preliminary incomplete 2011-06-27	1986 final complete 2010-07-21	1987 final complete 2010-07-21	1988 final complete 2010-07-21	1989 preliminary complete 2012-07-03
1990 preliminary incomplete 2010-07-21	1991 preliminary incomplete 2010-07-21	1992 preliminary incomplete 2010-07-21	1993 final complete 2010-07-21	1994 final complete 2010-07-21	1995 final complete 2010-07-21	1996 final complete 2010-07-21	1997 final complete 2010-07-21	1998 final complete 2010-07-21	1999 final complete 2011-06-04
2000 preliminary complete 2010-07-21	2001 preliminary complete 2012-06-08	2002 preliminary complete 2010-07-21	2003 preliminary complete 2010-07-21	2004 preliminary complete 2011-01-09	2005 preliminary incomplete 2010-08-23	2006 final complete 2011-01-04	2007 final complete 2010-07-21	2008 final complete 2010-07-21	2009 final complete 2010-07-21
2010 preliminary complete 2011-08-26	2011 preliminary incomplete 2012-02-17	2012 preliminary incomplete 2013-01-07	2013 preliminary incomplete			-			,


The time series of the daily data is also available (dailyDPD1977 2013.txt), and all the data and images can be downloaded from our ftp site in a direct way.

Additional table: tilt angles of sunspot groups derived from DPD.


Presentation of the DPD: three consecutive days in 1988

Presentation of the DPD: three consecutive days in 1988

Presentation of the DPD: three consecutive days in 1988

SDD: 1996-2010, all spots and groups, on a 1.5 hourly basis, with magn. data

Back to the front page of the observatory

SOHO/MDI - Debrecen Data (SDD)

Győri, L., Baranyi, T., Ludmány, A.

If the SDD data are used in any publications, please refer to this paper:

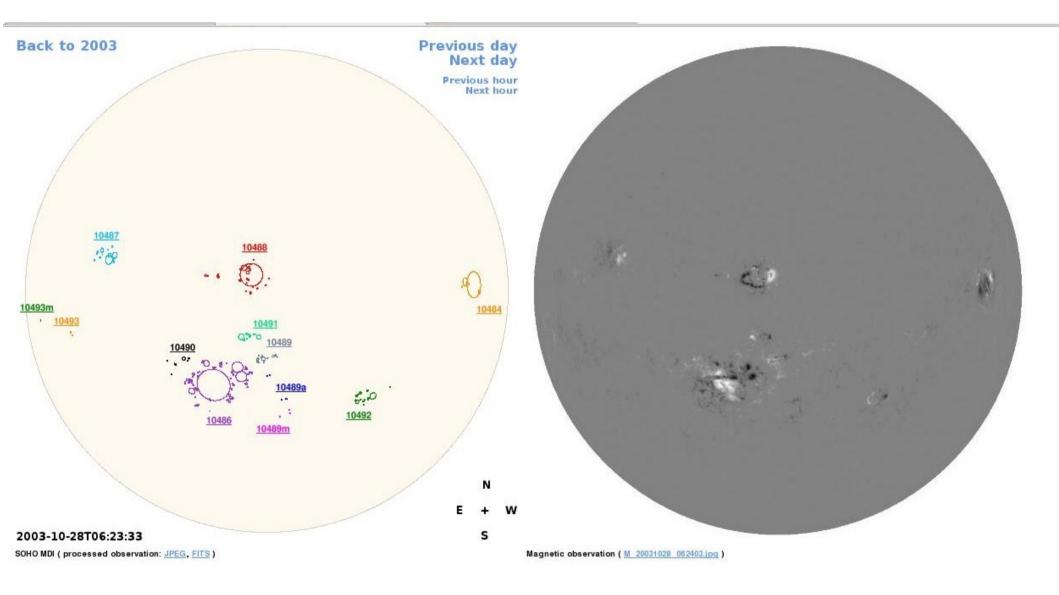
Györi, L., Baranyi, T., Ludmany, A., Photospheric data programs at the Debrecen Observatory, Proc. IAU Symp., 273, 403-407, 2011.

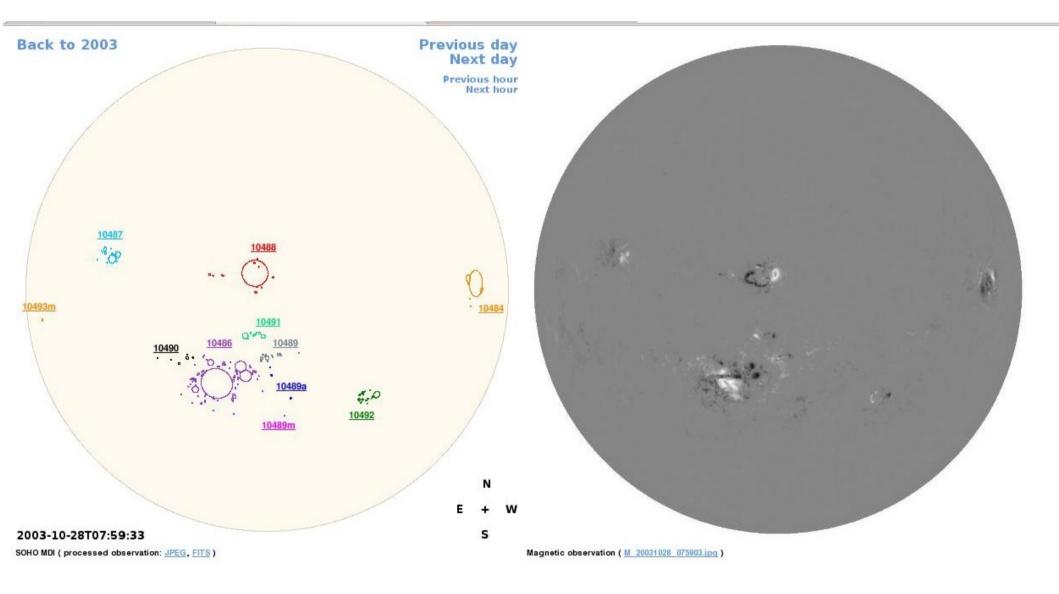
The production of data was done within the <u>WP2(Photosphere)</u> of <u>SOTERIA (SOIar-TER restrial Investigations and Archives)</u> project (FP7/SP1-Cooperation/1, Nov 2008 - 31 Oct 2011). The aim of the related tasks was to cover the entire SOHO-era with the most detailed data of sunspots, sunspot groups and photospheric faculae derived from MDI (Michelson Doppler Imager) continuum images and magnetograms with a ~1 image/hour temporal resolution. The MDI data are available by courtesy of the SOHO/MDI research group at Stanford University. SOHO (Solar and Heliospheric Observatory) is a mission of international cooperation between ESA and NASA.

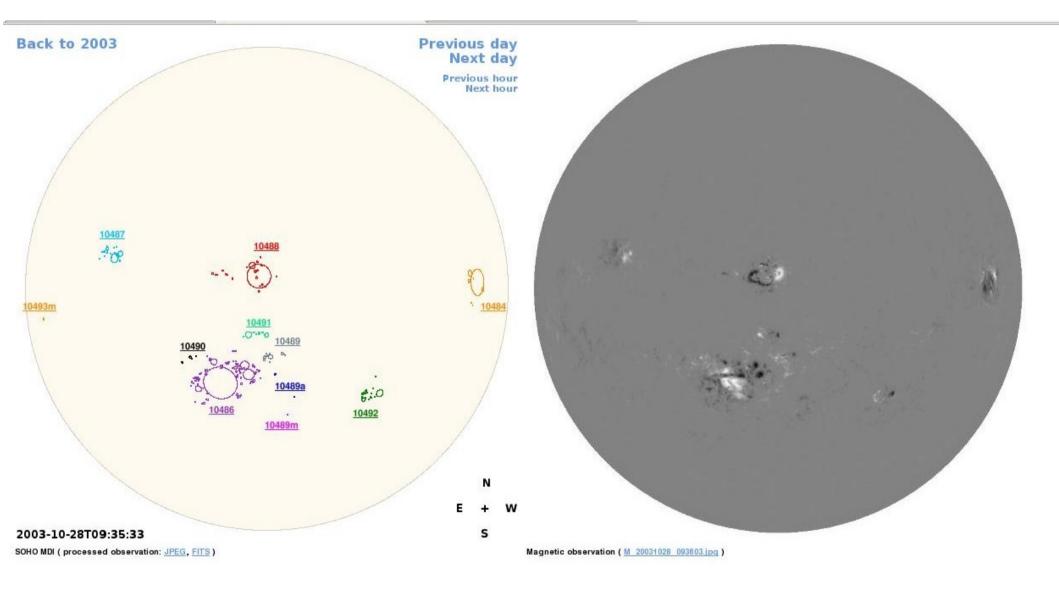
Data and Image Products: (All ftp) Additional tables: tilt angles of sunspot groups derived from SDD. Additional tool: MySQL query for SDD

Year Selected original Level 1.8. full-disk images			Processed enlarg images (solar no		Suns	pot and sunspot grou	Facular data (see <u>SDDformat.txt</u>)			
Graphical presentation of sunspots	Continuum intensity (fits.gz)	Magnetograms (fils.gz)	Contrast enh anced intensity images (jpg)	Magnetograms (jpg)	Full-disk catalogue of sunspots (txt)	Catalogue of sunspots and sunspot groups (txt)	Images of sunspot groups with numbering of spots (jpg)	Processed 16-bit negative images of sunspot groups (fits)	Full-disk catalogue of continuum faculae (txt)	Graphical presentation of faculae
1996	19961	1996M	<u>1996id jpg</u>	<u>1996M jpg</u>	tdSDD1996	SDD1996	1996group jpg	1996group fits	tacSDD1996	1996
1997	19971	<u>1997M</u>	<u>1997id jpg</u>	<u>1997M jpg</u>	tdSDD1997	SDD1997	1997group jpg	1997group fits	tacSDD1997	1997
<u>1998</u>	19981	<u>1998M</u>	<u>1998td jpg</u>	<u>1998M jpg</u>	tdSDD1998	SDD1998	1998group jpg	1998group fits	tacSDD1998	1998
1999	19991	<u>1999M</u>	1999id jpg	<u>1999M jpg</u>	tdSDD1999	SDD1999	1999group jpg	1999group fits	tacSDD1999	1999
2000	20001	2000M	2000td jpg	2000M jpg	tdSDD2000	SDD2000	2000group jpg	2000group tits	tacSDD2000	2000
2001	20011	2001 M	2001td jpg	2001 M jpg	tdSDD2001	SDD2001	2001group jpg	2001 group tits	tacSDD2001	2001
2002	20021	2002M	2002id jpg	2002M jpg	tdSDD2002	SDD2002	2002group jpg	2002group fits	tacSDD2002	2002
2003	2003)	2003.M	2003td jpg	<u>2003M jpq</u>	HISDD2003	SDD2003	2003group jpg	2003group tits	tacSDD2003	2003
2004	20041	2004M	2004td jpg	2004M jpg	1dSDD2004	SDD2004	2004group jpg	2004group tits	tacSDD2004	2004
2005	20051	2005M	2005/d jpg	2005M jpg	1dSDD2005	SDD2005	2005group jpg	2005group tits	tacSDD2005	2005
2006	20061	2006M	2006id jpg	2006M jpg	tdSDD2006	SDD2006	2006group jpg	2006group tits	tacSDD2006	2006
2007	20071	2007M	<u>2007/d jpg</u>	2007M jpg	tdSDD2007	SDD2007	2007group jpg	2007group fits	tacSDD2007	2007
2008	20081	2008M	2008td jpg	2008M jpg	tdSDD2008	SDD2008	2008group jpg	2008group tits	tacSDD2008	2008
2009	20091	2009M	2009ld jpg	2009M jpg	tdSDD2009	SDD2009	2009group jpg	2009group tits	tacSDD2009	2009
2010	20101	2010M	2010kd jpg	2010M jpg	tdSDD2010	SDD2010	2010group jpg	2010group fits	tacSDD2010	2010
Quick-Look 2010	QL 20101	QL 2010M	QL 2010td jpg	QL 2010M jpg	-	QL SDD2010	QL 2010group jpg	OL 2010group fits	-	-
Quick-Look 2011	QL 20111	QL 2011M	QL 20111d jpg	QL 2011M jpg	•	OL SDD2011	QL 2011group jpg	QL 2011group fits	1.5	-

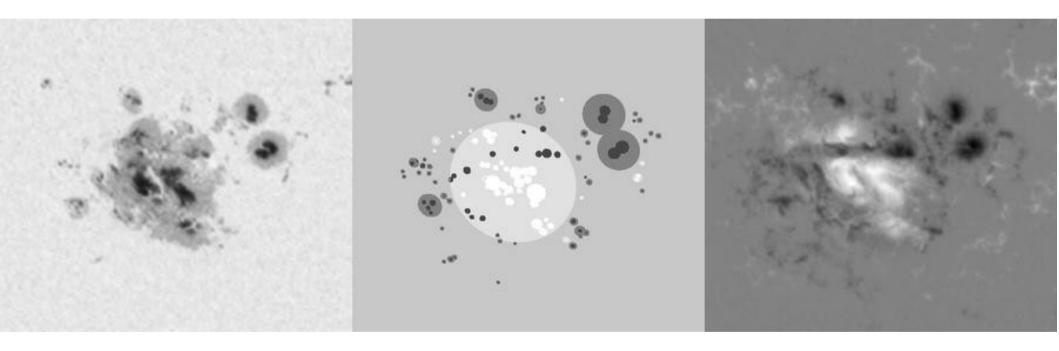
ACKNOWLEDGMENTS





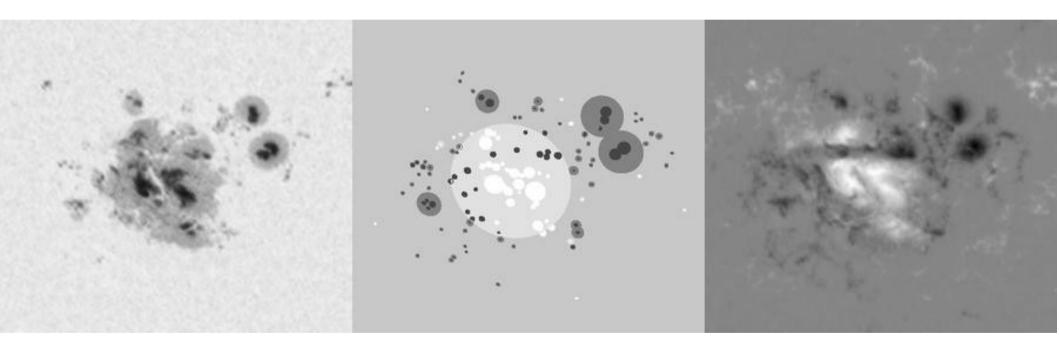

SDD, 28 Oct. 2003, 06:23:33 UT

SDD, 28 Oct. 2003, 07:59:33 UT


SDD, 28 Oct. 2003, 09:35:33 UT

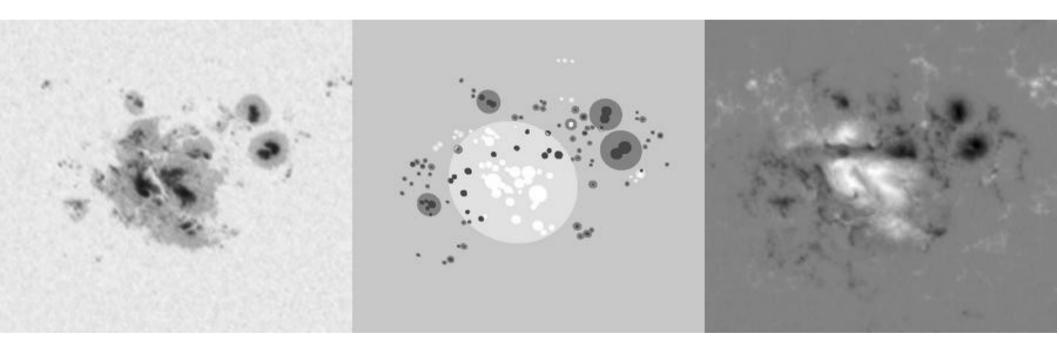
To demonstrate the detailedness of SDD: 2003 Oct 28, NOAA 10486 (Halloween) 06:23:33 UT data of 35 spots out of the 110 spots identified in the group g row: group data, s rows: spot data:

	No	U	U+P	U	U+P	В	L	dL	fi	r	magn.	magn.
		р	р	С	С						U	Р
g 2003 10 28 06 23 33 1	0486	871	6175	478	3391	-17.59	285.51	-12.39	151.98	0.4333	513.2	21.5
s 2003 10 28 06 23 33 1	0486 1	0	9	0	5	-15.06	294.24	-3.66	169.68	0.3456	-931.0	-807.2
s 2003 10 28 06 23 33 1	0486 2	0	6	0	3	-14.90	293.76	-4.14	168.27	0.3445	-1065.0	-945.9
s 2003 10 28 06 23 33 1	0486 3	0	6	0	3	-15.40	293.39	-4.51	167.57	0.3537	-305.0	-165.5
s 2003 10 28 06 23 33 1	0486 4	0	7	0	4	-16.89	293.15	-4.75	167.86	0.3782	739.0	354.3
s 2003 10 28 06 23 33 1	0486 5	0	5	0	3	-18.73	293.10	-4.80	168.74	0.4074	-700.0	-482.2
s 2003 10 28 06 23 33 1	0486 6	0	8	0	4	-14.05	293.06	-4.84	165.72	0.3333	-755.0	-721.5
s 2003 10 28 06 23 33 1	0486 7	3	22	2	12	-17.72	292.89	-5.01	167.70	0.3923	606.0	83.7
s 2003 10 28 06 23 33 1	0486 8	3	-7	2	-7	-17.98	292.76	-5.14	167.54	0.3967	749.3	999999
s 2003 10 28 06 23 33 1	0486 9	0	6	0	3	-13.64	292.79	-5.11	164.63	0.3280	-950.0	-765.5
s 2003 10 28 06 23 33 1	0486 10	0	3	0	2	-14.09	292.70	-5.20	164.74	0.3356	-853.0	-730.7
s 2003 10 28 06 23 33 1	0486 11	47	495	25	264	-15.82	291.89	-6.01	163.97	0.3664	-2139.4	-722.3
s 2003 10 28 06 23 33 1	0486 12	39	-11	21	-11	-16.24	291.35	-6.55	162.96	0.3754	-1741.4	999999
s 2003 10 28 06 23 33 1	0486 13	30	511	16	269	-13.45	290.83	-7.06	158.99	0.3352	-2288.2	-660.5
s 2003 10 28 06 23 33 1	0486 14	24	-13	13	-13	-13.99	290.70	-7.20	159.20	0.3441	-1715.2	999999
s 2003 10 28 06 23 33 1	0486 15	0	10	0	5	-18.18	289.64	-8.26	160.64	0.4135	-1288.0	-886.6
s 2003 10 28 06 23 33 1	0486 16	0	6	0	3	-15.56	289.67	-8.23	158.27	0.3740	-1297.0	-962.3
s 2003 10 28 06 23 33 1	0486 17	0	11	0	6	-21.63	289.25	-8.65	162.48	0.4666	-846.0	-855.4
s 2003 10 28 06 23 33 1	0486 18	0	2	0	1	-17.84	289.41	-8.49	159.85	0.4098	-870.0	-717.8
s 2003 10 28 06 23 33 1	0486 19	2	15	1	8	-14.94	289.46	-8.44	157.10	0.3661	-1187.2	-604.8
s 2003 10 28 06 23 33 1	0486 20	0	4	0	2	-19.24	289.09	-8.81	160.37	0.4321	229.0	234.8
s 2003 10 28 06 23 33 1	0486 21	0	6	0	3	-21.85	288.85	-9.05	161.90	0.4717	-631.0	-441.5
s 2003 10 28 06 23 33 1	0486 22	3	31	2	17	-21.50	288.83	-9.07	161.61	0.4667	-1170.4	-625.8
s 2003 10 28 06 23 33 1	0486 23	0	9	0	5	-16.56	289.02	-8.88	157.78	0.3929	-1304.0	-1007.0
s 2003 10 28 06 23 33 1	0486 24	4	18	2	10	-20.86	288.45	-9.45	160.41	0.4593	-524.7	-254.3
s 2003 10 28 06 23 33 1	0486 25	3	15	2	9	-22.55	288.30		161.38		-230.3	-140.0
s 2003 10 28 06 23 33 1	0486 26	0	13	0	8	-22.12	287.86	-10.04	160.28	0.4806	160.0	280.7
s 2003 10 28 06 23 33 1	0486 27	0	4	0	2	-12.76	288.09	-9.81	150.97	0.3439	528.0	430.2
s 2003 10 28 06 23 33 1	0486 28	10	4411	5	2440	-16.37	287.64	-10.26	154.53	0.3991	-1888.2	253.9
s 2003 10 28 06 23 33 1	0486 29	10	-28	6	-28	-21.19	286.87	-11.03	157.74	0.4727	1249.0	999999
s 2003 10 28 06 23 33 1	0486 30	23	-28	12	-28	-16.30	286.95	-10.95	152.97	0.4030	-1721.2	999999
	0486 31	4	-28	2			286.61				1201.7	9999999
	0486 32	15	-28	9			286.33				1165.2	999999
	.0486 33	8	-28	4							-1319.9	9999999
	0486 34	0	4	0			286.89				-906.0	-731.2
	0486 35	0	3	0							-1003.0	-881.1
		-	-	-								


SDD, 28 Oct. 2003, NOAA10486, 06:23:33 UT

Continuum

Cartoon drawn from the position, area and polarity data in the SDD Magnetogram


SDD, 28 Oct. 2003, NOAA10486, 07:59:33 UT

Continuum

Cartoon drawn from the position, area and polarity data in the SDD Magnetogram

SDD, 28 Oct. 2003, NOAA10486, 09:35:33 UT

Continuum

Cartoon drawn from the position, area and polarity data in the SDD Magnetogram

A historical observational material:

Hungarian historical solar drawings

Our observatory hosts two historical solar image databases containing heritages of two former observatories.

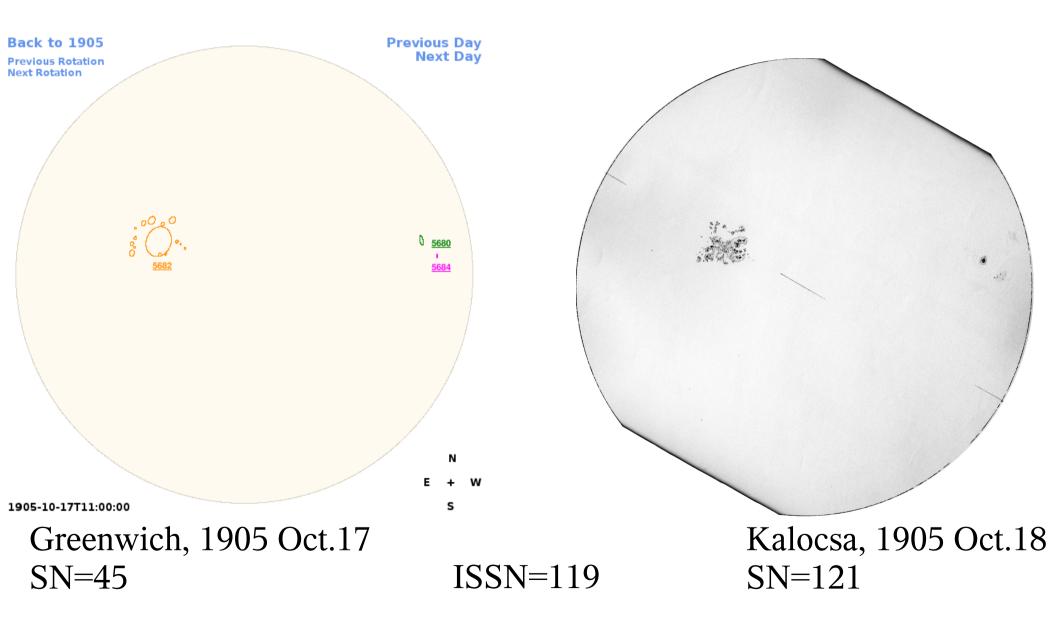
The first of them was observed at Ógyalla Observatory founded by <u>Miklós Konkoly-Thege</u> (1842-1916). We have solar observations taken here between 1872 and 1891. The other set of solar drawings was observed at the <u>Haynald Observatory</u> in Kalocsa between 1880 to 1919.

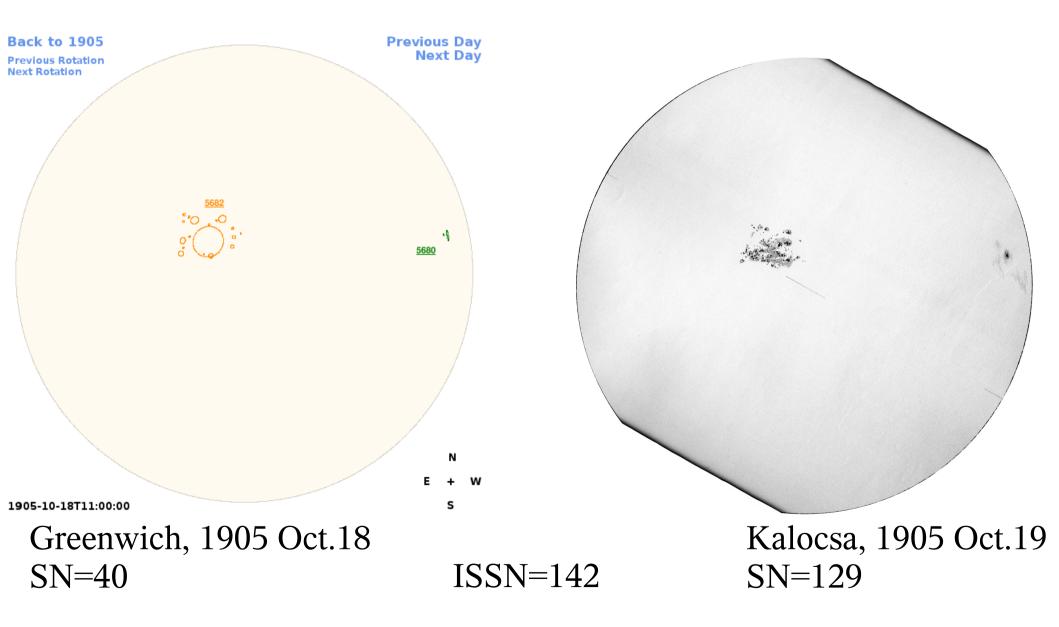
ÓGYALLA OBSERVATORY

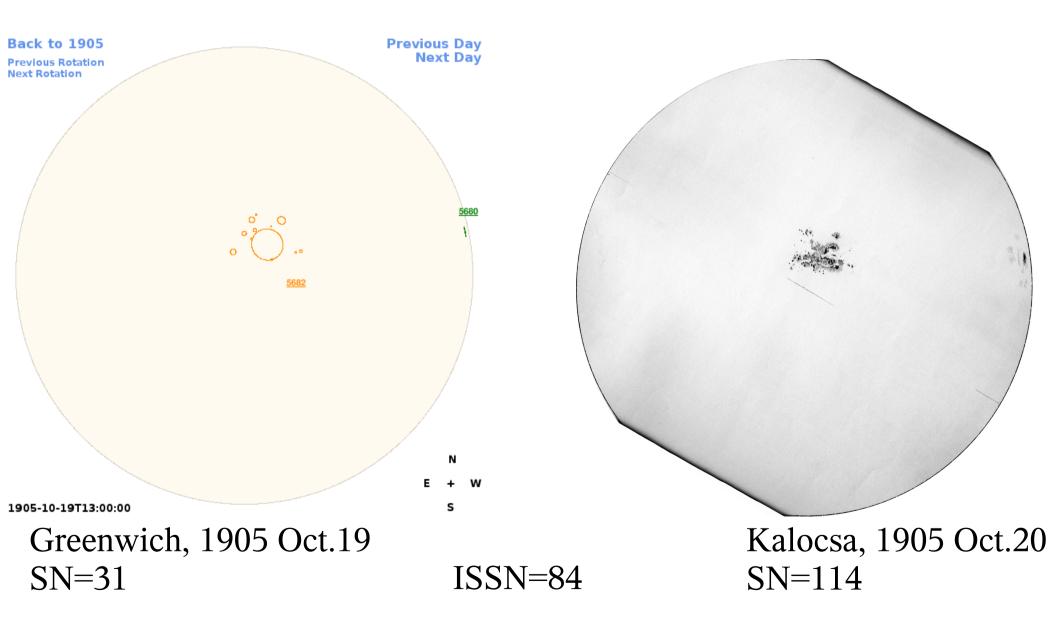
		<u>1872</u> (76 days)	<u>1873</u> (14 days)	<u>1874</u> (81 days)	<u>1875</u> (45 days)	<u>1876</u> (23 days)	<u>1877</u> (40 days)	<u>1878</u> (38 days)	<u>1879</u> (74 days)
1880	<u>1881</u> (202 days)	<u>1882</u> (224 days)	<u>1883</u> (203 days)	<u>1884</u> (191 days)	<u>1885</u> (221 days)	<u>1886</u> (178 days)	<u>1887</u> (129 days)	<u>1888</u> (111 days)	<u>1889</u> (70 days)
<u>1890</u> (73 days)	<u>1891</u> (145 days)								

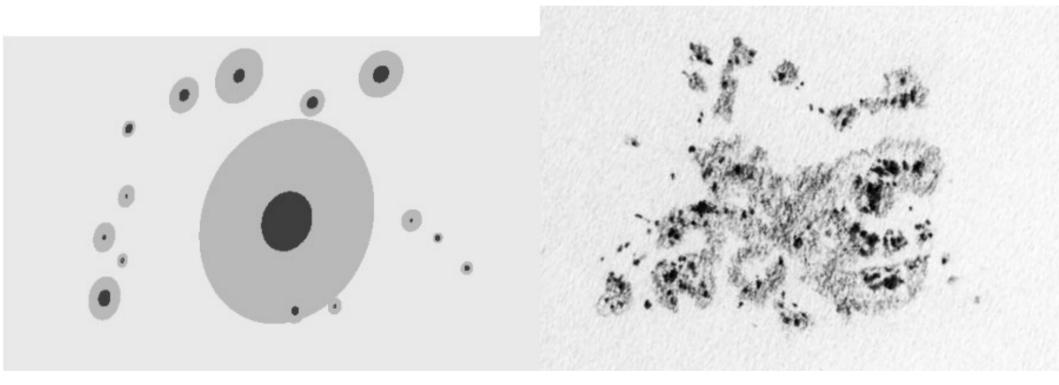
HAYNALD OBSERVATORY

	44								
1880	1881	1882	<u>1883</u>	1884	1885	1886	1887	1888	1889
(92	[]		(107 days)	(210	(248	(227	(197	(154	
days)				days)	days)	days)	days)	days)	
1890	1891	1892	<u>1893</u>	1894	1895	1896	1897	1898	1899
	(253	(234	(165 days)	(271	(257	(129	(61	(147	(156 days)
	days)) days)		days)	days)	days)	days)	days)	• 1996/1996 a sign and a
1900	1901	1902	<u>1903</u>	1904	1905	1906	1907	1908	1909
(127	(67	(116	(227 days)	(185	(213	(257	(259	(256	(254 days)
days)	days)) days)	od change – do in default	days)	days)	days)	days)	days)	Andre og og det en en en besteren.
1910	1911	1912	<u>1913</u>	1914	1915	1916	1917	1918	<u>1919</u>
(246	(176	(119	(68 days)	(137	(216	(231	(15	(64	(14 days)
days)	days)) days)		days)	days)	days)	days)	days)	

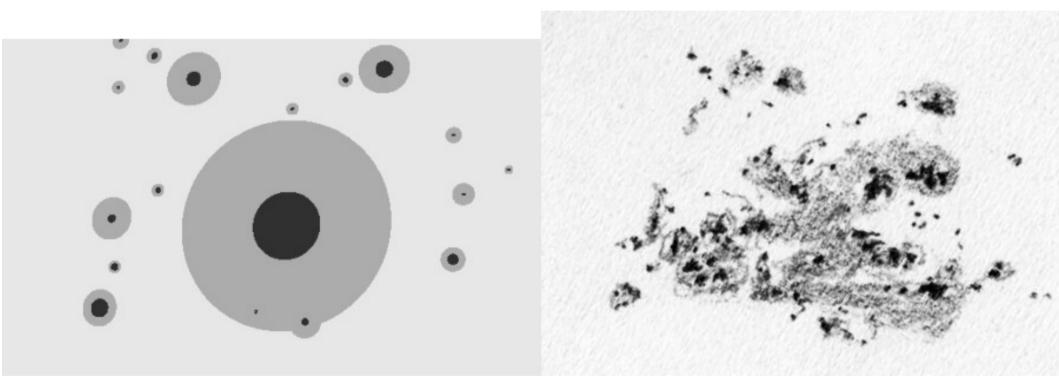

ACKNOWLEDGMENTS




Comparison of the sunspot data reconstructed graphically from the GPR to the drawings from Kalocsa and the ISSN in Oct. 1905.

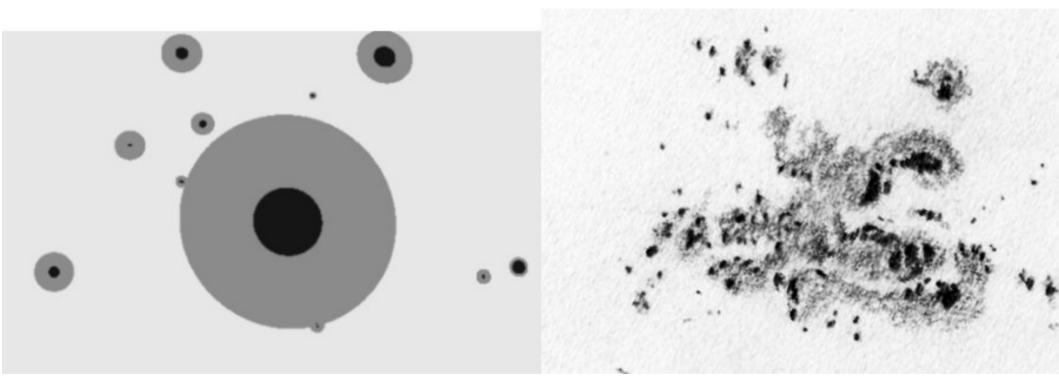

Comparison of the sunspot data reconstructed graphically from the GPR to the drawings from Kalocsa and the ISSN in Oct. 1905.

Comparison of the sunspot data reconstructed graphically from the GPR to the drawings from Kalocsa and the ISSN in Oct. 1905.



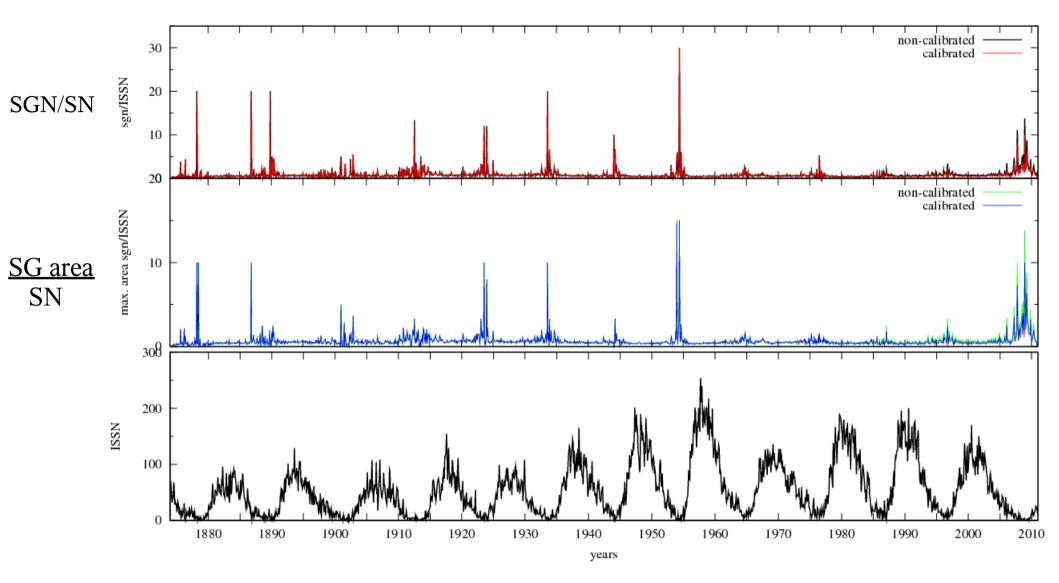
Comparison of the sunspot data reconstructed graphically from the GPR to the drawings from Kalocsa and the ISSN in Oct. 1905. No.5682

Greenwich, 1905 Oct.17 SN=15 Kalocsa, 1905 Oct.18 SN=101

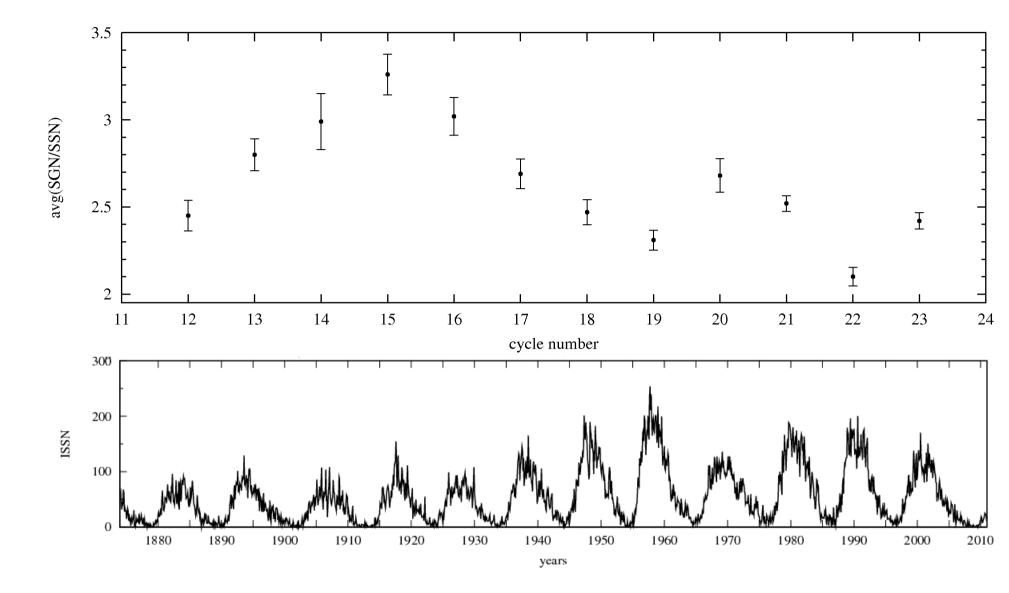

Comparison of the sunspot data reconstructed graphically from the GPR to the drawings from Kalocsa and the ISSN in Oct. 1905. No.5682

Greenwich, 1905 Oct.18 SN=18

Kalocsa, 1905 Oct.19 SN=109


Comparison of the sunspot data reconstructed graphically from the GPR to the drawings from Kalocsa and the ISSN in Oct. 1905. No.5682

Greenwich, 1905 Oct.19 SN=11


Kalocsa, 1905 Oct.20 SN=94

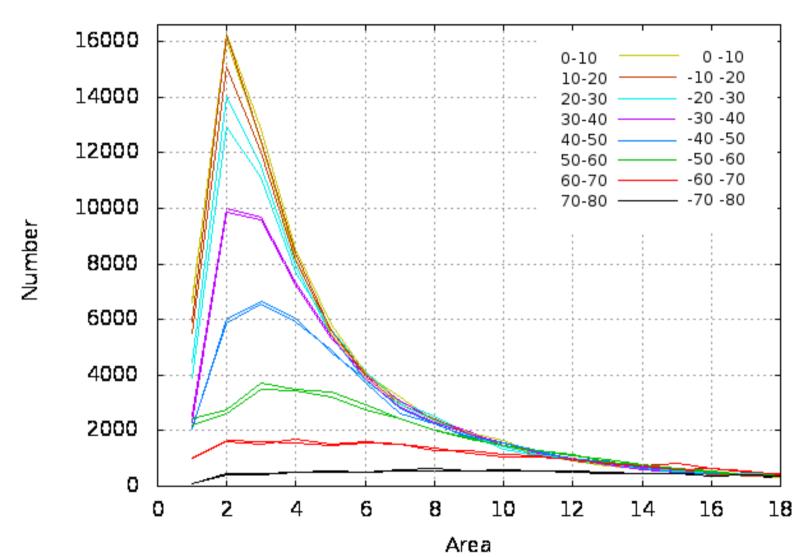
Comparison of the Sunspot Group Number (SGN) from GPR and the Sunspot Number (SN), monthly means

The cyclic means of SGN/SN ratio are computed for the inner 5 years of the cycles because of the high errors in minima

Cyclic means of the ratio SGN/SN

Waldmeier's involvement cannot be pointed out in the long term variation of the cyclic mean ratio of SGN/SN, but there are long trends.

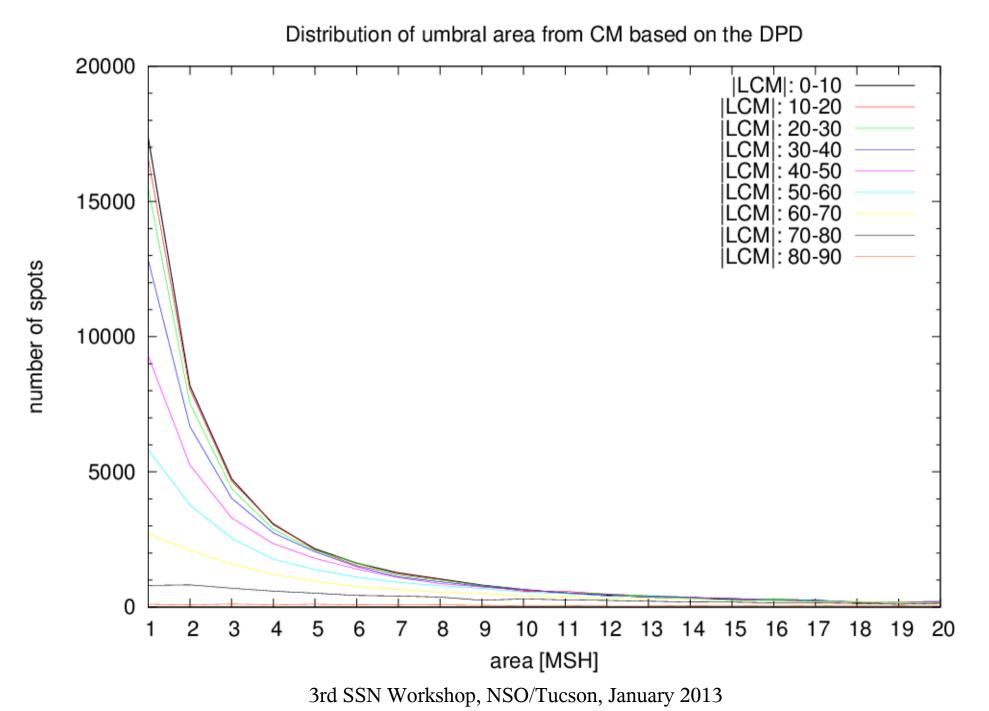
1. What can be the sources of the inhomogeneities in long sunspot datasets?

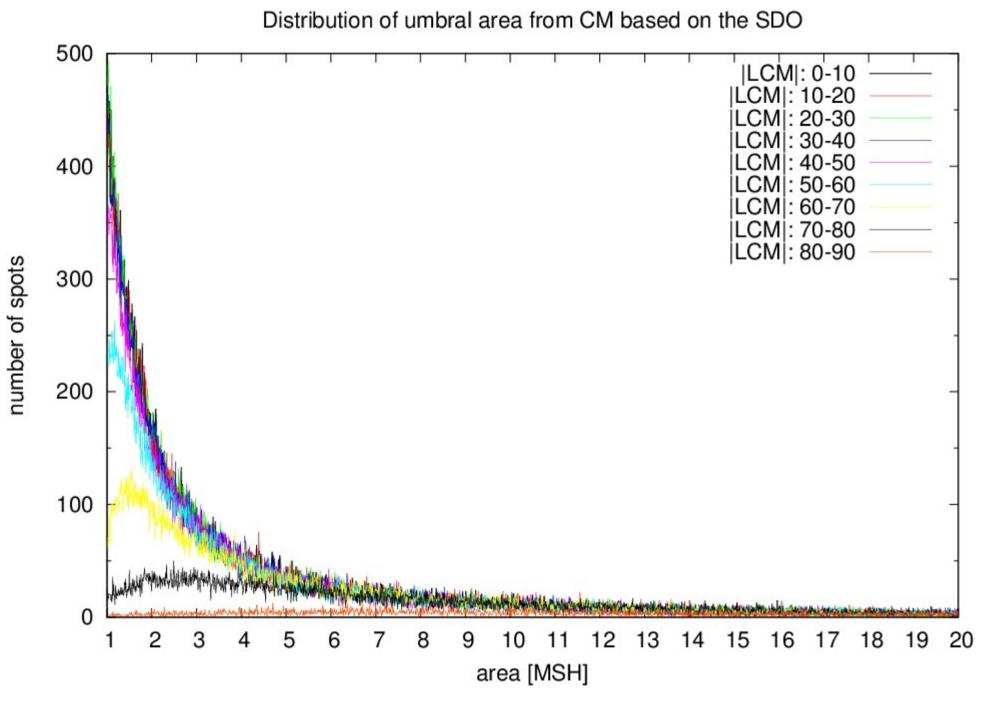

- atmospheric seeing
- instrumental (objective)
- registration technique visual, graphic, photographic, electronic
- personal bias (selection criteria)
- robustness of SN definition
- mistakes
- unrevealed variations of solar origin
- 2. What could be the most reliable independent parameter to detect the varying performance of the determination of ISSN?

proxies? - connections may be weak GPR? - also inhomogeneous reprocessing the old observations? if yes, the different techniques may also result inhomogeneity

A possible parameter for the era of existing observations:

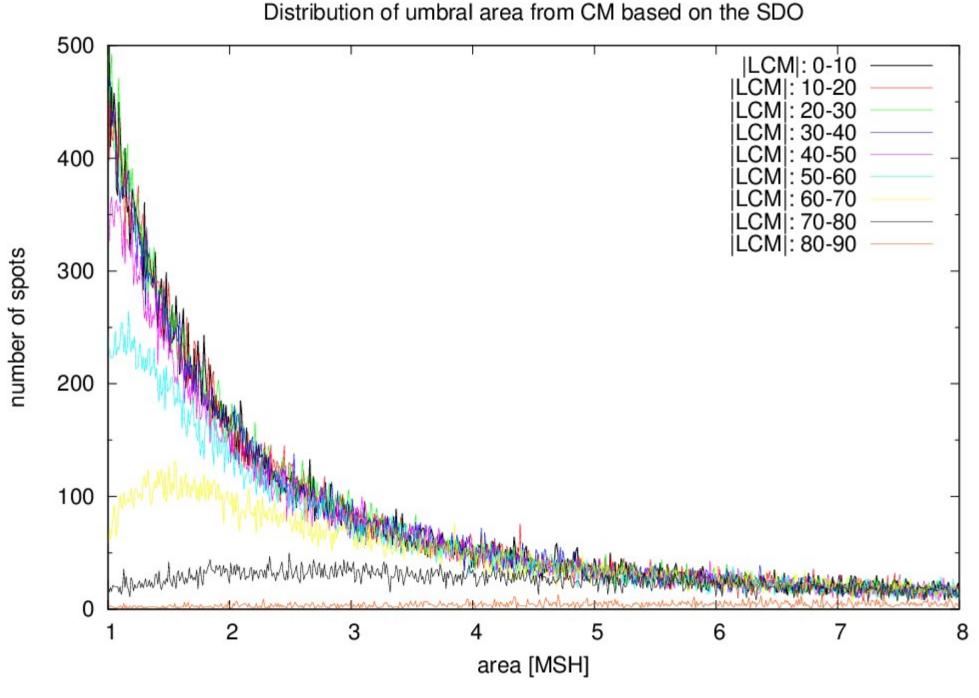
total area of sunspot umbrae


Problem of areas: varying observability of the spots across the disc Umbral area distribution at different CM-distances, SDD, 1996-2010


SDD (-80 0 +80) LMC, 10° step

In the SDD the CMD-dependence is only insignificant for umbrae larger than 7MSH

The same distributions from the DPD, 1977-2012 the 1 MSH umbrae are better represented because of the higher resolution



The same distributions from the HMIDD, 2010-2012

3rd SSN Workshop, NSO/Tucson, January 2013

The same distributions from the HMIDD, 2010-2012

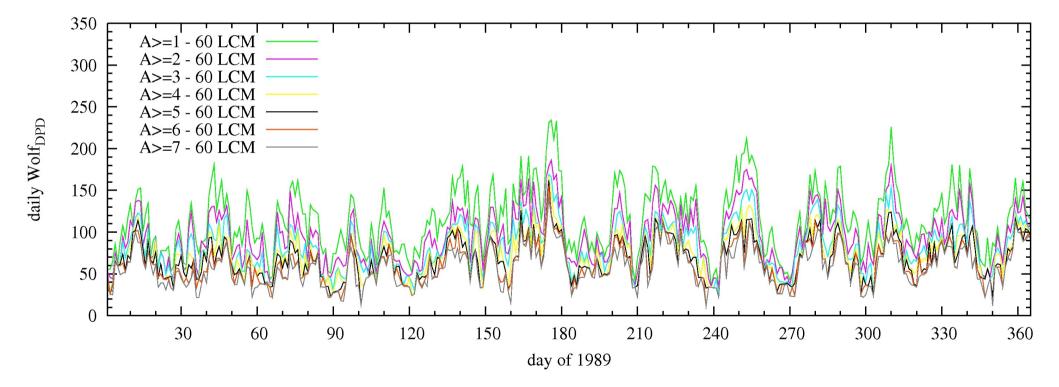
3rd SSN Workshop, NSO/Tucson, January 2013

This CMD-dependence imposes the same constraint on each sunspot dataset, it could apparently be disregarded.

However, it makes questionable, whether the daily sunspot number is a real measure of the activity.

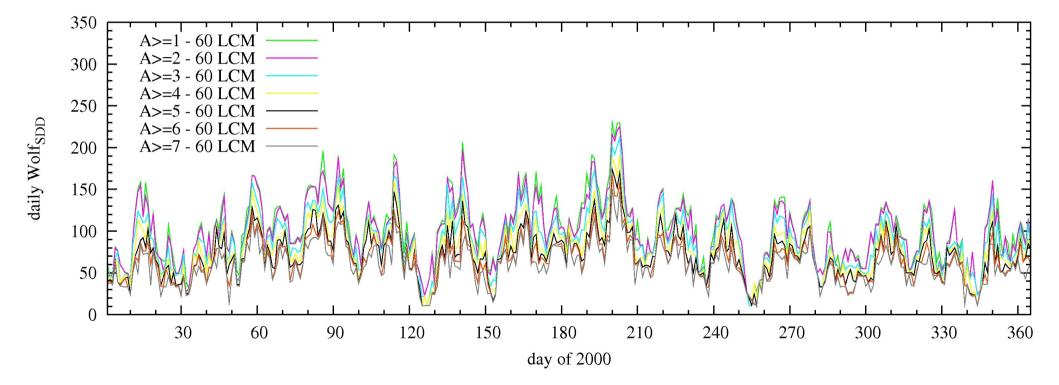
It may have a significant daily variability even if all spots remain the same at the same locations during two weaks, just because of the variable observability.

The monthly values are real.


Should we omit the spots below an area limit?

This could even increase the inhomogeneity because of the difficulties of area measurements.

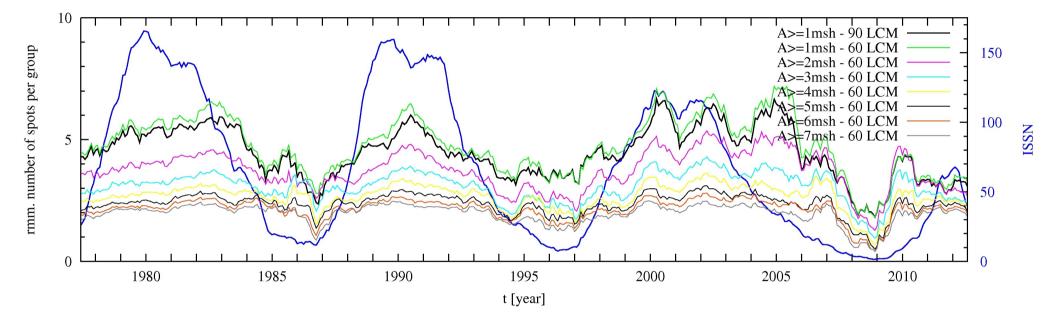
Next slides:


what happens if the smaller spots (from 1 o 7 MSH) are omitted from the data?

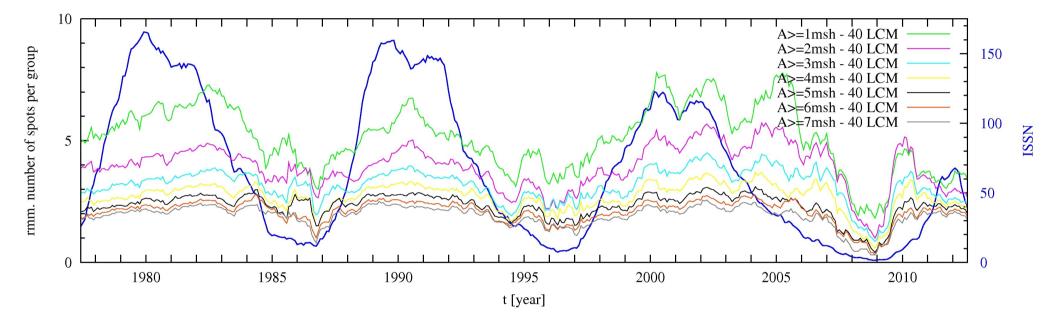
Daily Wolf- numbers in 1989 from the data of DPD, sunspots within $\pm 60^{\circ}$ CMD (Central Meridian Distance) are considered

3rd SSN Workshop, NSO/Tucson, January 2013

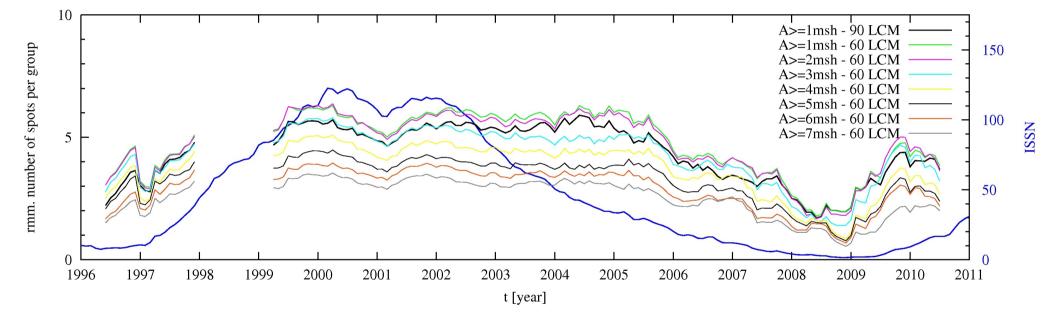
Daily Wolf- numbers in 200 from the data of SDD, sunspots within $\pm 60^{\circ}$ CMD (Central Meridian Distance) are considered

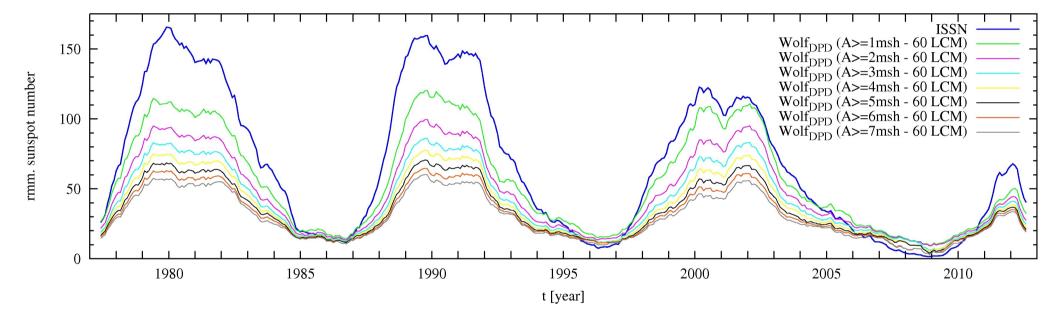

3rd SSN Workshop, NSO/Tucson, January 2013

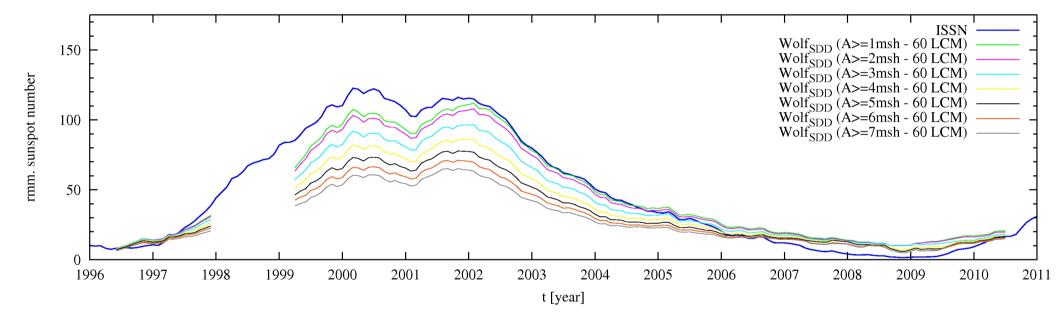
Variation of the number of spots in the groups


What is the real weight of the groups?

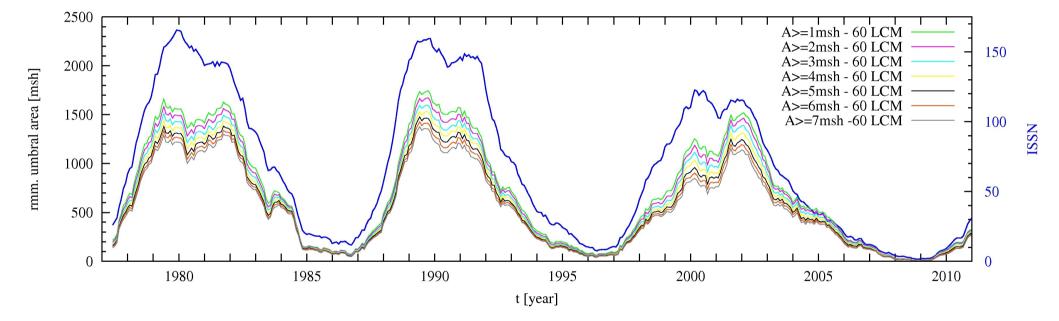
How stable is the Wolf-definition?

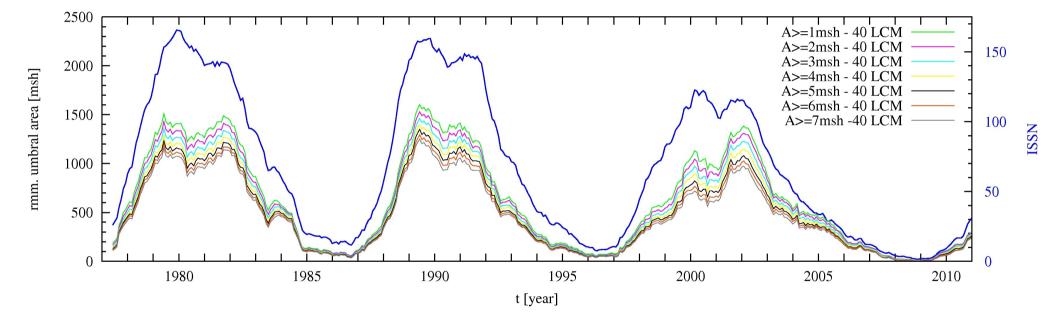

Number of spots in groups at maximum area within $\pm 60^{\circ}$ CMD in the DPD era


Number of spots in groups at maximum area within $\pm 40^{\circ}$ CMD in the DPD era

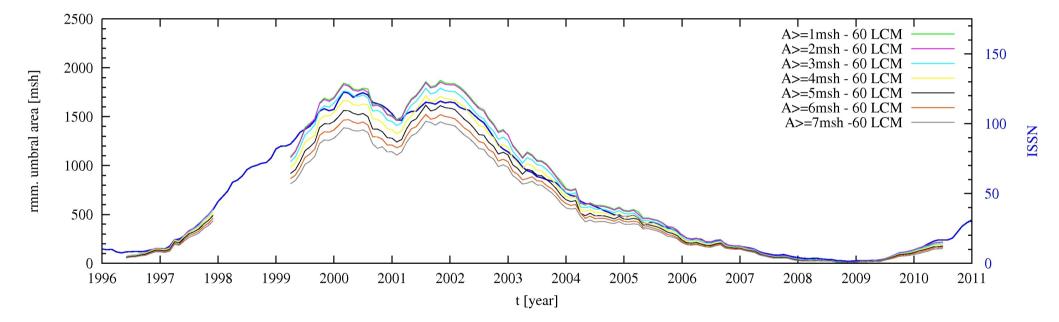

Number of spots in groups at maximum area within $\pm 60^{\circ}$ CMD in the SDD era

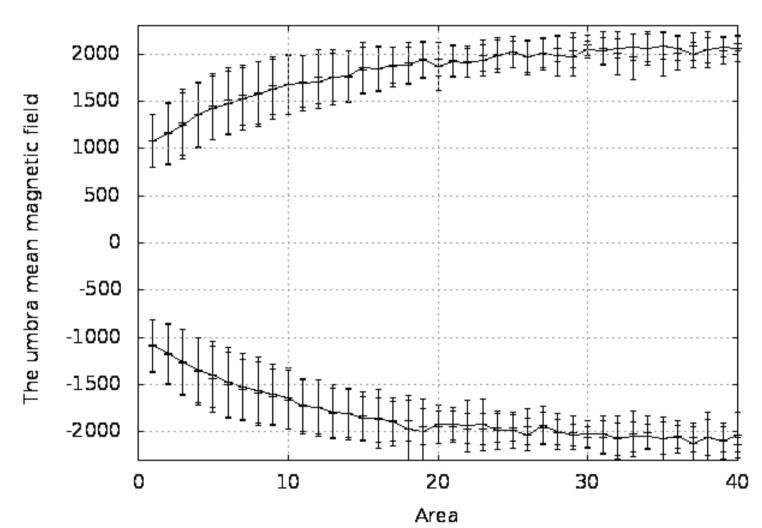
Cyclic time profiles of ISSN and the DPDWolf within ±60° CMD 11-monthly running means


Cyclic time profiles of ISSN and the SDDWolf within ±60° CMD 11-monthly running means


A possible reference parameter: total area of sunspots

measurable on the disc


Total umbral area vs ISSN in the DPD era monthly means of group areas taken at the highest size smoothed with an 11-month window $\pm 60^{\circ}$ CMD


Total umbral area vs ISSN in the DPD era monthly means of group areas taken at the highest size smoothed with an 11-month window $\pm 40^{\circ}$ CMD

Total umbral area vs ISSN in the SDD era monthly means of group areas taken at the highest size smoothed with an 11-month window $\pm 60^{\circ}$ CMD

Another possible measure: total amount of emerged magnetic flux by using the area [MSH] – mean magnetic field [gauss] relationship obtained from the SDD data in the 10° environment of the solar disc center.

SDD 2000-2010

3rd SSN Workshop, NSO/Tucson, January 2013

The total magnetic flux for all spots observable on the solar disc:

$$TMF = \left[\sum K \times f(A_i) \times A_i \right]_{LP}$$

 A_i : Area of i-th umbra

 $f(A_i) = B_i$ the mean magnetic field of the i-th umbra (see previous frame)

K: a factor between the umbral and total fluxes

LP: leading polarity

A long-term program in Debrecen to establish an alternative sunspot parameter for the assessment of activity level:

- Phase 1: monthly emerged flux by using SDD data
 - Calculating TMF (previous slide) at the maximum phase of each group
 - Summarizing all these TMF values for the entire month.
- Phase 2: extension of the method for those area observations where no magnetic data are available.
- Ultimate aim: to obtain monthly values of the total emerged flux for all time intervals covered by solar disc observations.
- Advantage: this parameter is physically better established than the Wolf-definition based on spot counts.

THANK YOU