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Kobel, Solanki & Borrero (2011)

studied quiet Sun using Hinode
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Observed umbral magnetic
field distributions

dB/dt = -46 +/- 6 Gauss / yr

Relative Number

2000 2500 32000

Magnetic Field [Gauss]

Gaussian Fits to Distributions:

Date Mean Width
1998-2002 2436 +/- 26 323 +/- 20

2003-2007 2204 +/- 10 296 +/- 7
2008-2011 1999 +/- 13 276 +/-9
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Many studies of sunspot magnetic fields which
use visible spectral lines have found a solar cycle
dependence of the average magnetic field...
dating back to Albregtsen and Maltby (1981),
and including Penn and MacDonald (2007).

Some studies using,visible spectral
measurements find no change, including
Mathew et al. (2007) and Schad and Penn
(2010).

A recent study from Rezaie, Beck & Schmidt
(2012) using some (99) infrared measurements
combined with “visible measurements” finds a
solar cycle change.
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Table 1. Atomic properties of the observed spectral
lines (Nave et al. 1994).

Line A (nm) Exc pot(eV) log(gf) g-effective
Fer  1564.852 5426 -0.669 3.00

Fer  1089.630 3.071 -2.845 1.50 1565nm g}\ = 4695

S11 1082.709 4954 0.363 1.50

1090nm gA = 1635

Each data set consists of full Stokes profiles in magnetically 1083nm g)\ = 1625
sensitive infrared lines such as Fe11564.8m, Fe11089.6nm, or

Si11082.7nm. Table 1 summarizes the atomic parameters of the

selected spectral lines. Out of the 231 maps, 99 were observed 630nm g\ = 1575
at 1.56um and 84 at 1.1 gm. The remaining 48 maps mainly g

come from the earliest observations with TIP-I and were taken

in some uncommon wavelength ranges. often covering molecu-

lar lines. These data could therefore not be used without consid-

erable effort. We thus only selected those observations in which

one of the three spectral lines listed in Table 1 was recorded. That

amounted to 183 full Stokes sunspot maps covering the descend-

ing phase of cycle no. 23 and the rise of cycle no. 24.
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than solely using the intensity profiles. The advantage with re-
spect to the stray light contamination is that the intensity in

the quiet Sun (QS) surroundings is higher than in the umbra,
whereas exactly the opposite relation holds for the polarization
signal. Therefore intensify spectra in the umbra are contaminated
by contributions from the QS. but the splitting of Stokes-¥ 1s not.
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We assume that all magnetic fields form 10.7cm radio emission, but only
fields above magnetic threshold (1500G) form sunspots

Sunspot formation fraction is defined as:

SSN [z N(B)dB

We approximate the Magnetic PDF with a Gaussian:
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Formation fraction should be an erfc:

f spot ~ €T i'l c( B, -'
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Second assumption: the underlying distribution doesn’t change shape with

time, and so B, can be expressed as a function of time

B.= (1500 — B(t))/(~/20)

= (B, — dB/dt At)/(v/20)

This is scale invariant, but using the boundary
condition that B(2000)=2436 Gauss allows us to fit
with a least squares technique for dB/dt and o
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Best fit gives distribution for fg,
dB/dt = -27 +/- 4 Gauss / yr

o =500 +/- 20 Gauss

IR magnetic distribution:
dB/dt = -46 +/- 6 Gauss / yr

o = 323 +/- 20 Gauss

Extrapolating this trend predicts Cycle 24
only half as large as Cycle 23, and Cycle
25 will have two sunspot groups.
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than at its end. Although the magnetic sensitivity of the infrared
Fe11564.8 nm line is high (Riledi et al. 1995). the influences of
scattered light and line blends in the intensity profiles on the
measurement motivates one to employ more accurate methods
to derive the field strength. It is not clear how dynamo theory
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