Long-term Trends in Sunspot Magnetic Field Strengths

Alexei A. Pevtsov National Solar Observatory

Acknowledge fruitful discussions with Livingston, W.C., Cliver, E., Bertello, L., Nagovitsyn, Yu. A., Tlatov, A.G., Watson, F., Penn, M.

• Past attitude: <u>"Sunspots are forever"</u>

Penn and Livingston (2011)

Livingston (2014, private communication)

Penn & Livingston (2006): decline in field strengths –52 G/year Watson et al (2011) –70 G/year

Sunspot Field Strength and 10.7 cm Radio Flux

Livingston, Penn, Svalgaard (2012)

PDF retains shape, mean shifting 46 G yr⁻¹
Ratio of spots field strength to 10.7 cm flux anomaly consistent

Sunspot Field Strength and 10.7 cm Radio Flux

Livingston, Penn, Svalgaard (2012)

PDF retains shape, mean shifting 46 G yr⁻¹
Ratio of spots field strength to 10.7 cm flux anomaly consistent

"Russian" Data Set

- •Long-term trends may appear due to inclusion of smaller/weaker field features
- •Strong fields show only variations with solar cycle, and no secular trend
- •Penn & Livingston (2006): decline in field strengths –52 G/year
- •Watson et al (2011) –70 G/year
- •-83.5 G/yr (C19), -47.1 (C20), -97.9 (C21), -85.1 (C22), -118.7 G/yr (C23)

Pevtsov et al (2011)

"Russian" Data Set

- •Long-term trends may appear due to inclusion of smaller/weaker field features
- •Strong fields show only variations with solar cycle, and no secular trend
- •Penn & Livingston (2006): decline in field strengths –52 G/year
- •Watson et al (2011) –70 G/year
- •-83.5 G/yr (C19), -47.1 (C20), -97.9 (C21), -85.1 (C22), -118.7 G/yr (C23)

Pevtsov et al (2011)

Changing statistics?

All sunspots

Daily largest sunspots

- Solar cycle variations with amplitude about 1000 G
 Magnetic field proxy shows variations with solar cycle
- Much weaker secular trend (300 G increase-decrease) with a broad maximum in 1950th Gleissberg Cycle?

Change in distribution of sunspots

Changes in Area-Field Relation

Ringnes & Jensen (1960): $H=a_3 \log A_p + b_3$

• Can be explained by changes in fraction of small or large sunspots

Conclusions

- No indication of <u>significant</u> long-term variations in sunspot field strength (and their proxies)
- Long-term variations in distribution of sunspots by area and changes in B=f(A) suggest changes in fractional contribution of small/large sunspots
- The latter may explain long-term (small amplitude) long-term changes in proxies of sunspot field strength

What does it all mean?

• Changes in depth of sunspot flux formation may increase/decrease fraction of sunspots with stronger/weaker field strength.

Pevtsov el at (2011)

