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Cosmogenic iIsotope production

Atmospheric cascade

In the atmospheric cascade, nuclear reactions
may take place, most important being:

Spallation reactions on O, N, Ar =2 "Be, 1°Be,
22Na, 36Cl, etc.

Neutron capture: “N+n - “C+p

Storage in natural independetly dated
archives: ice-cores, tree trunks, sediments,
corals




cosmogenic 4C and 1°Be

n+N =2>1C CR + N,O =2 19Be
CO, =2 carbon cycle = treerings aerosols -2 fall out
» Mode CR energy is ~ 3 GeV/nucleon; » Mode CR energy is 1-2 GeV/nucleon;
* mean altitude: upper tropo, low stratosphere; * mean altitude: upper tropo, lower stratosphere;
» measurements: normalized *C/'2C ratio * measurements: abundance
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Atmospheric transport of 1°Be

Ba—10 total deposition [at/m2/s], Ave 1986—1990

Annual Mean 1°Be Flux [at/m2/s] — Heikkila (2007), Field et al (JGR, 2006)
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Solar cycles in 10Be
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Carbon cycle (Pandora model)
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Advantages and shortcomings

advantages — “ OFF-LINE" type
v Primary archiving is done routinely in a similar manner throughout the ages.
v Measurements are done nowadays in laboratories. If necessary, all measurements can be
repeated and improved.
v Absolute independent dating is possible (tree-rings, ice cores, marine sediments, etc.)
v’ As a result, a homogeneous, of equal quality, data series can obtained.

Shortcomings

v'Redistribution in the geosphere and archiving may be affected by local and global
climate/circulation processes which are to a large extend unknown in the past, thus justified only
for the Holocene (since ca. 9500 BC)
» 10Be — unknown mixing; prone to short-term regional and long-term global transport variability
» 14C — global mixing; changes of ocean circulation (multi-millennial scales); Suess effect;

SOLUTION:

v Combined results from different nuclides, e.g. °Be and 4C, whose responses to terrestrial
effects are very different and may allow for disentangling external and terrestrial signals.
v'Other proxy???




Combined record
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Geomagnetic field effect
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The heliosphere

Solar Wind Termination Shock

Interstellar Heliopause

Wind




HCS drift
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Heliospheric data

® Most of direct data exist for the ecliptic plane: S
ULYSEES /SWOOPS

» IMF = can be approximated assuming the regular L
Parker’s field;

» Solar wind - little variability over the solar cycle;

® Latitudinal scans (ULYSSES):
» latitudinal variability of the solar wind;

® Solar observations:
» HCS tilt angle; CMEs;

ULYSSES/HAG g LAY EIT (MASA/GERD)

. D|Stant mISSIOnS: [mperial Collage £ i X Wl Z'.:" ; Mnuna Loa MEN {EAD)
» Discovery of the termination shock; e T

MeComas, DA, et al,, Geophys. Res. Lat. 25, 1-4, 1598

Quality and quantity of data decrease
backwards in time.



Force-field approximation

Under some simplifying assumptions, the force-field (FF) approximation of CR transport

of VP of
or 31< 8P

equation is:

Solution: P =P - @

variable parameter fixed parameter LIS



Spectrum parameterization
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Kinetic energy (GeV/nucleon)

Measured GCR (p and o) spectra can be well fitted with the single parameter in a
wide range of the modulation strength.

LIS from Burger, Potgieter & Heber, JGR, 105, 27447, 2000.



¢ reconstruction since 1951

Usoskin et al., JGR, 110, 2005.




Cosmic ray variability

Short time scale (days): transients

Mid time scale (months-years): all modulation processes (diffusion,
convection, drifts)

Long time scales (decades-centennia): diffusion-dominated 1D model
(force-field), heliosphere size,

Very long time scales (millennia): solar modulation + geomagnetic field

Extra long time scales (> 104 years): geomagnetic field — lunar samples
—> constant solar modulation

Geological time scale (>108 years): local galactic surroundings




Model computations:

* SN -> open flux model (Solanki
et al., 2002; Krivova et al., 2007;
Vieira et al., 2011);

 open flux -> CR
(Usoskin et al., 2005);

* CR -> 10Be
(Kovaltsov & Usoskin, 2010)
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44T1 In meteorites: A direct test




Modulation potential: reconstructions




44Ti production rate, Q ;

Michel & Neumann, Earth Planet. Sci., 107, 441, 1998




Ti-44 activity: model-vs-measurements
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Ti-44 activity: model-vs-measurements




A word of warning on regressions




Sunspot numbers

CR count rate (%)

Belov et al., JASTP, 2006
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Regressions

11-y

Regression, annual
Regression, 11y
Annual 1950-2010
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R2=0.992







® Series #1 — a neutron monitor count rate.
® Series # 2 — barometric pressure;

® Period #1 — Jan-Mar 2008 (quiet);

® Period #2 — Jan 2005 (GLE + 2 FDs)

NM Is a bad barometer, but the long-
term relation is lost,

barometer iIs NOT a NM




Conclusions

Cosmogenic isotopes form a reliable proxy for solar magnetic
activity (HMF+solar wind — not ecliptics) on decadal-centennial-
millennial time scale.

Centennial variability of SA is robustly confirmed.

44Ti in meteorites confirms large centennial variability during the
last 150 years.

As we know from cosmogenic data — linear regression does NOT
work. The relation between SA and cosmogenic data is essentially
non-linear.







