Cosmogenic radionucl ides: an index of Solar activity

Ilya Usoskin

University of Oulu, Finland

Cosmogenic isotope production

Atmospheric cascade

In the atmospheric cascade, nuclear reactions may take place, most important being:

Spallation reactions on *O*, *N*, $Ar \rightarrow {}^{7}Be$, ${}^{10}Be$, ${}^{22}Na$, ${}^{36}Cl$, etc.

Neutron capture: ${}^{14}N+n \rightarrow {}^{14}C+p$

Storage in natural independetly dated archives: ice-cores, tree trunks, sediments, corals

cosmogenic ¹⁴C and ¹⁰Be

 $n + N \rightarrow {}^{14}C$ $CO_2 \rightarrow carbon cycle \rightarrow tree rings$

- Mode CR energy is ~ 3 GeV/nucleon;
- mean altitude: upper tropo, low stratosphere;
- measurements: normalized ¹⁴C/¹²C ratio

$CR + N, O \rightarrow {}^{10}Be$ aerosols \rightarrow fall out

- Mode CR energy is 1–2 GeV/nucleon;
- mean altitude: upper tropo, lower stratosphere;
- measurements: abundance

Atmospheric transport of ¹⁰Be

Annual Mean ¹⁰Be Flux [at/m2/s] – Heikkilä (2007), Field et al (JGR, 2006)

Solar cycles in 10Be

Carbon cycle (Pandora model)

Advantages and shortcomings

advantages – "OFF-LINE" type

- ✓ Primary archiving is done **routinely in a similar manner** throughout the ages.
- Measurements are done <u>nowadays</u> in laboratories. If necessary, all measurements can be repeated and improved.
- ✓ <u>Absolute independent dating</u> is possible (tree-rings, ice cores, marine sediments, etc.)
- ✓ As a result, a **homogeneous, of equal quality, data series** can obtained.

Shortcomings

- Redistribution in the geosphere and archiving may be affected by local and global climate/circulation processes which are to a large extend unknown in the past, thus justified only for the Holocene (since ca. 9500 BC)
 - ¹⁰Be unknown mixing; prone to short-term regional and long-term global transport variability
 - ¹⁴C global mixing; changes of ocean circulation (multi-millennial scales); Suess effect;

SOLUTION:

 Combined results from different nuclides, e.g. ¹⁰Be and ¹⁴C, whose <u>responses to terrestrial</u> <u>effects are very different</u> and may allow for disentangling external and terrestrial signals.
Other proxy???

Combined record

Geomagnetic field effect

The heliosphere

HCS drift

Heliospheric data

Most of direct data exist for the ecliptic plane:
» IMF → can be approximated assuming the regular Parker's field;

» Solar wind \rightarrow little variability over the solar cycle;

Latitudinal scans (ULYSSES):

» latitudinal variability of the solar wind;

Solar observations:

» HCS tilt angle; CMEs;

Distant missions:

» Discovery of the termination shock;

McComas, D.J., et al., Geophys. Res. Lett., 25, 1-4, 1998

Quality and quantity of data decrease backwards in time.

Under some simplifying assumptions, the force-field (FF) approximation of CR transport equation is:

$$\frac{\partial f}{\partial r} + \frac{VP}{3\kappa} \cdot \frac{\partial f}{\partial P} = 0$$

variable parameter

fixed parameter LIS

Spectrum parameterization

Measured GCR (p and α) spectra can be well fitted with the single parameter in a wide range of the modulation strength.

LIS from Burger, Potgieter & Heber, JGR, 105, 27447, 2000.

ϕ reconstruction since 1951

Usoskin et al., JGR, 110, 2005.

Cosmic ray variability

Short time scale (days): transients

Mid time scale (months-years): all modulation processes (diffusion, convection, drifts)

Long time scales (decades-centennia): diffusion-dominated 1D model (force-field), heliosphere size,

Very long time scales (millennia): solar modulation + geomagnetic field

<u>Extra long time scales</u> (> 10⁴ years): geomagnetic field – lunar samples

 \rightarrow constant solar modulation

Geological time scale (>10⁸ years): local galactic surroundings

Long-term CR

200

Model computations:

Sunspot number SN -> open flux model (Solanki et al., 2002; Krivova et al., 2007; Vieira et al., 2011); Ω **N_{st}, 10⁵ cnts/h** open flux -> CR (Usoskin et al., 2005); 3.5 1.6 • CR -> 10Be 300 1.4 (Kovaltsov & Usoskin, 2010) ¹⁰Be, 10⁴ atom/g 100 1.2 1 -100 0.8 -300 0.6 Greenland -500 Reconstruction 0.4 Antarctic 0 0.2 -700

1700

1800

1900

1600

promille

¹⁰BG

2000

⁴⁴Ti in meteorites: A direct test

Modulation potential: reconstructions

44Ti production rate, Q_{Ti}

Michel & Neumann, Earth Planet. Sci., 107, 441, 1998

Integration/decay => measured activity :

$$A(t) = \frac{1}{\tau} \int_{-\infty}^{t} Q_{Ti}(\tau) \cdot \exp\left(\frac{t-x}{\tau}\right) d\tau$$

A word of warning on regressions

Regressions?

Regressions

Series #1 – a neutron monitor count rate.

- Series # 2 barometric pressure;
- Period #1 Jan-Mar 2008 (quiet);
- Period #2 Jan 2005 (GLE + 2 FDs)

NM is a bad barometer, but the longterm relation is lost, barometer is NOT a NM

Conclusions

- Cosmogenic isotopes form a reliable proxy for solar magnetic activity (HMF+solar wind – not ecliptics) on decadal-centennialmillennial time scale.
- Centennial variability of SA is robustly confirmed.
- ⁴⁴Ti in meteorites confirms large centennial variability during the last 150 years.

As we know from cosmogenic data – linear regression does NOT work. The relation between SA and cosmogenic data is essentially non-linear.

