

Effects of Lower Magnetic Fields on the Thermosphere-Ionosphere

Erdal Yiğit^1, and Aaron J. Ridley 1

¹*University of Michigan*, Ann Arbor, USA email: erdal@umich.edu

Sunspot Workshop Sunspot, New Mexico, USA, 19 - 22 September 2011

Contents

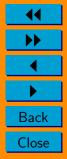
1	Introduction - Science Question	3
2	Introduction - Earth's Magnetic Field	4
3	Model Description	6
4	Model Configurations	8
5	Model Simulations	10
6	Model Results	11
7	Electron Density Distributions	12
8	Temperature and Neutral Flows	14
9	Meridional Flow & Electron Density	15
10	Temperature Variations	16
11	Summary and Conclusion	17

••

Back Close Introduction - Science Question This Study

How does

decreasing magnetic field impact


the thermosphere-ionosphere?

system

Introduction - Earth's Magnetic Field

- Tilted offset dipole field
- Variable: magnitude and distribution
- \bullet Magnitude decreased in the last 150 years ~10-15% and still decreasing...
- Geophysical (dynamics, chemistry) and biological impacts (pigeons, bees).

Research Strategy & Outcome This study

A General Circulation Model that simulates the thermosphere-ionosphere self-consistently

Lower the magnetic field density

Quantify the changes in the thermosphere-ionosphere

Model description-I

Global Ionosphere Thermosphere Model (GITM)

- First principle nonhydrostatic general circulation model (GCM) described in the work by *Ridley et al.* (2006)
- Vertical extent: 100- \sim 650 km
- Variable time step 2-4 s.
- Variable flexible grid resolution, e.g., $5^{\circ} \times 5^{\circ}$, $0.3125^{\circ} \times 2.5^{\circ}$ (*Yiğit and Ridley*, 2011)
- GSWM, MSIS tidal forcing
- 2-way self-consistent thermosphere-ionosphere coupling
- Vertical momentum equation explicitly solved.
- Part of the Space Weather Modeling Framework (SWMF)

Thursday.

Model description-II

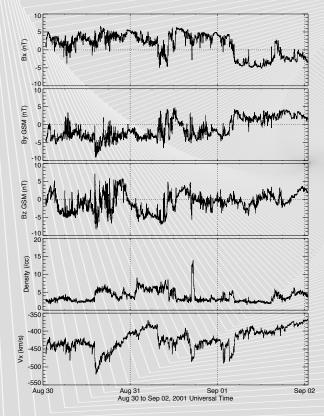
Global Ionosphere Thermosphere Model (GITM)

- Dynamics: ion drag, advection, tides, etc.
- Solar and Magnetospheric input:
 - Joule heating
 - Auroral heating
 - High-latitude electric fields
 - Interplanetary magnetic field (IMF)
 - Solar F10.7 flux
 - Solar wind speed
- Chemistry: Neutral densities of O, O_2 , $N(^2P)$, $N(^2D)$, $S(^2P)$, N_2 , and NO; and ion species $O^+(^2P)$, O_2^+ , N^+ , $O^+(^4S)$, $O^+(^2D)$, N_2^+ , and NO^+

Back Close

Model Configurations

Input


• Variable F10.7, hemispheric power, and IMF conditions from observations

This are

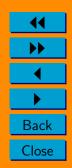
Back Close

- Empirical high-latitude electric fields (*Weimer*, 2005)
- Auroral particle precipitation (Fuller-Rowell and Evans, 1987)
- MSIS lower boundary fields

Model Configurations: Input

Figure 1: Heliospheric variations from 30 Aug - 1 Sept 2008.

Model Simulations and Methodology


Period of simulations

- 30 August 1 September 2008
- Analysis of 1 September 2008

Reducing the magnetic field

I.	В	100%
II.	Β	95%
III.	Β	90%
IV.	Β	85%
V.	В	80%

Then calculate the differences with respect to I.

Electron density distributions - 1200 UT

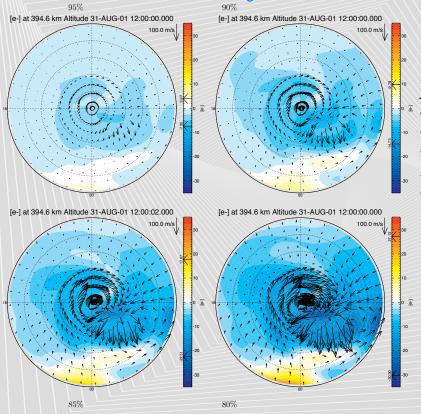
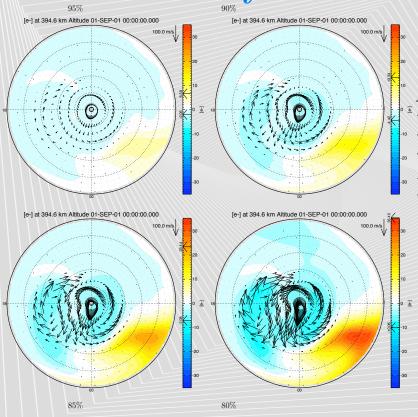



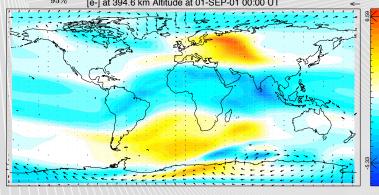
Figure 2: Polar distributions of relative electron density changes in percentage for decreasing magnetic fields on 31 Aug 1200 UT. Relative changes ion flows are overplotted.

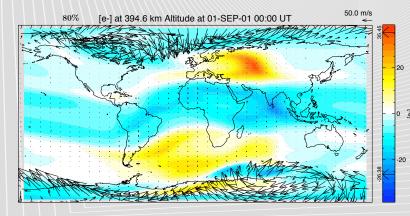
- **v** enhanced dramatically at high-latitudes.
- n_e increases around midnight at midlatitudes, while everywhere else n_e decreases.

Electron density distributions - 0000 UT

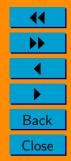
[∞] Figure 3: Polar distribution of
 [∞] Erelative electron density change
 [∞] in percentage for decreasing mag [∞] netic fields on 1 Sept 0000 UT.
 [∞] Relative changes ion flows are overplotted.

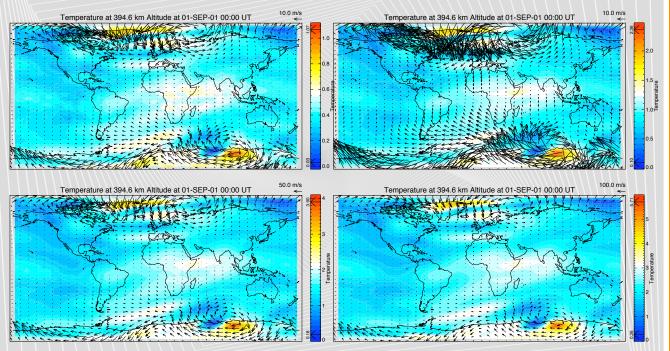
To and the second


Back


Close

- v enhanced dramatically at high-latitudes!
- n_e increases around midnightdawn at midlatitudes, while everywhere else n_e decreases.


Electron density distributions: Lat-lon



² Figure 4: Latitude-longitude dis [◦] E tributions of relative electron den ² sity change in percentage for cases
 95% and 80% magnetic fields. Rel ⁴ ative changes ion flows are overplot ⁶ ted.

- Electron density increase around midlatitudes and decrease at high-latitudes
- Ion flows are faster at highlatitudes.
- \bullet Hemispheric differences.

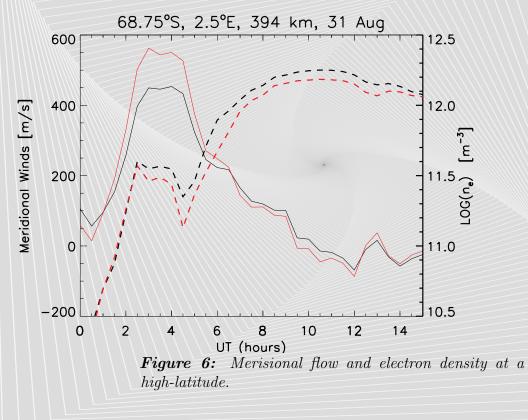

Temperature and Neutral Flows

Figure 5: Relative percentage difference in temperature. Difference in neutral flows are overplotted. ↓
↓
Back
Close

14/19

Meridional Flow & Electron Density

▲
▲
▲
Back
Close

Temperature Variations

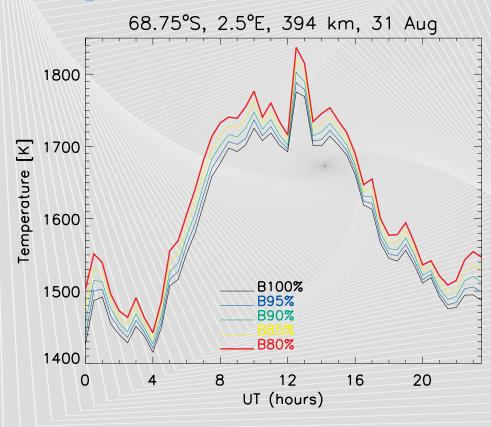
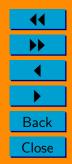



Figure 7: Universal time variation of neutral temperature at 68.75°, 2.5° E at 394 km on 31 August.

Summary and Conclusion

Ion flows

- With decreasing magnetic field, the ions become faster $\mathbf{E} \times \mathbf{B}/B^2$ \rightarrow Variations in ion drag and Joule heating are expected!
 - \rightarrow Changes in dynamics and heat balance
- Variability (future work)

Electron density distributions

With decreasing ${\bf B}$ from 100 to 80%

- 6-35% increase in n_e at midlatitudes at night
- \bullet Up to -35% change in n_e at high-latitudes

Summary and Conclusion (cont'd)

Temperature and neutral flows

- \bullet Temperatures increase overall up to 5% (SH high-latitudes)
- Neutral flows are enhanced with decreasing B becoming more equatorward during the night.
 → effects on chemistry
- Ion drag and Joule heating probably play a great role (future study).

Future Work

- Modeling the Sun-Earth connection.
- Impact of solar variability at various scales.
- Observational implications
- Ion drag and Joule heating.

19/19

References

- Fuller-Rowell, T. J., and D. S. Evans (1987), Height-integrated Pederson and Hall conductivity patterns inferred from TIROS-NOAA satellite data, J. Geophys. Res., 92, 7606–7618.
- Ridley, A. J., Y. Deng, and G. Tóth (2006), The global ionosphere–thermosphere model, J. Atmos. Sol.-Terr. Phys., 68, 839–864.
- Weimer, D. R. (2005), Improved ionospheric electrodynamic models and application to calculating Joule heating rates, J. Geophys. Res., 110, A05306, doi:10.1029/2004JA010884.
- Yiğit, E., and A. J. Ridley (2011), Effects of high-latitude thermosphere heating at various scale sizes simulated by a nonhydrostatic global thermosphere-ionosphere model, J. Atmos. Sol.-Terr. Phys., 73, 592–600, doi:10.1016/j.jastp. 2010.12.003.

Back Close