The History of the Sunspot Number

Leif Svalgaard Stanford University, California, USA http://www.leif.org/research

AOGS, Singapore, August 2015

Six or Seven Groups

Six or Seven Groups

The Sunspot Number ~1856

Observed 1849-1893 1849-1855 Bern 1856-1893 Zürich

- Wolf Number = $k_W (10^*G + S)$
- G = number of groups
- S = number of spots
- k_w = telescope aperture
 + site seeing + personal
 factor + learning curve

Principal Actors and Observers

(1825-1867)	Direct	ors of Zuri	ich Observ	vatory	
1789–1875	(1849-1893)	()	(1926-1945)	(1945-1980))
Schwabe	1816-1893	(1877-1928)	1878-1958	1912-2000	(1957-present)
Heinrich	Rudolf Wolf	1854-1931	Brunner	Waldmeier	-
Samuel	Johann	Alfred Wolfer	William Otto	Max	Sergio Cortesi

1825-1980 the Sunspot Number (SSN) was derived mostly from a single observer. Since then, the SSN is determined by SILSO in Brussels [Belgium] as an average of ~60 observers normalized to Cortesi in Locarno

Wolf initially used 4' Fraunhofer telescopes with aperture 80 mm [Magn. X64]

Still in use today [by T. Friedli] continuing the Swiss tradition [under the auspices of the Rudolf Wolf Gesellshaft]

This is the 'Norm' Telescope in Zürich

Wolf occasionally [and eventually – from 1860s on exclusively] used much smaller handheld, portable telescopes [due to frequent travel], leaving the large 80mm telescope for his assistants

These telescopes also still exist and are still in use today to safeguard the stability of the series

Wolf estimated that to scale the count using the small telescopes to the 80mm Standard telescope, the count should be multiplied by 1.5 (The *k*-factor)

k-factor Dependencies

Table 2. k-factors as a function of seeing for Kandilli Observatory (Atlas et al., 1998)

Seeing	1(worst)	2	3	4	5(best)
Days	244	473	812	682	126
k	0.96	0.95	0.90	0.83	0.74 7

Wolf increased all pre-1849 numbers by 25%

Abstract of his latest Results. By Prof. Wolf.

(Translation communicated by Mr. Carrington.)

Some fine series of observations of Flaugergues, Adams, Arago, and others, have enabled me to fill in previous breaks, and to express in the same unit my Relative numbers (for the abundance of Solar Spots in successive years) for the years from 1749 to 1860. They are as follows:—

¥749	63.8	1777.	63.0	1805	50.05	1833	7°5 m
1750	68-2 M	78	94.8	o6	30.05	34	11.4
51	40.9	1779	99°2 M	0 7	10.05	35	45.2
52	33*2	1780	72.6	08	2.5	36	96.7
53	23.1	81	67.7	1809	o*8	37	111.0 M
54	13.8	82	33.5	1810	0.0 m	38	82.6
55	6.0 m	83	22.2	11	0.9	1839	68.5
56	8-8	84	4.4 m	12	5'4	1840	51.8
-		•			~ .		
2		•	11		5.		2
1749	80.9	1777	92.5	1805	42.2	1833	8.5 m
1749 1750	80.9 83.4 M	1777 78	92.5 154.4	1805 06	42.2 28.1	1833 34	8.5 m 13.2
1749 1750 51	80.9 83.4 M 47.7	1777 78 1779	92.5 154.4 125.9 M	1805 06 07	42.2 28.1 10.1	1833 34 35	8.5 m 13.2 56.9
1749 1750 51 52	80.9 83.4 M 47.7 47.8	1777 78 1779 1780	92.5 154.4 125.9 M 84.8	1805 06 07 08	42.2 28.1 10.1 8.1	1833 34 35 36	8.5 m 13.2 56.9 121.5
1749 1750 51 52 53	80.9 83.4 M 47.7 47.8 30.7	1777 78 1779 1780 81	92.5 154.4 125.9 M 84.8 68.1	1805 06 07 08 1809	42.2 28.1 10.1 8.1 2.5	1833 34 35 36 37	8.5 m 13.2 56.9 121.5 138.3 M
1749 1750 51 52 53 54	80.9 83.4 M 47.7 47.8 30.7 12.2	1777 78 1779 1780 81 82	92.5 154.4 125.9 M 84.8 68.1 38.5	1805 06 07 08 1809 1810	42.2 28.1 10.1 8.1 2.5 0.0 m	1833 34 35 36 37 38	8.5 m 13.2 56.9 121.5 138.3 M 103.2
1749 1750 51 52 53 54 55	80.9 83.4 M 47.7 47.8 30.7 12.2 9.6 m	1777 78 1779 1780 81 82 83	92.5 154.4 125.9 M 84.8 68.1 38.5 22.8	1805 06 07 08 1809 1810 11	42.2 28.1 10.1 8.1 2.5 0.0 m 1.4	1833 34 35 36 37 38 1839	8.5 m 13.2 56.9 121.5 138.3 M 103.2 85.7
1749 1750 51 52 53 54 55 56	80.9 83.4 M 47.7 47.8 30.7 12.2 9.6 m 10.2	1777 78 1779 1780 81 82 83 84	92.5 154.4 125.9 M 84.8 68.1 38.5 22.8 10.2 m	1805 06 07 08 1809 1810 11 12	42.2 28.1 10.1 8.1 2.5 0.0 m 1.4 5.0	1833 34 35 36 37 38 1839 1840	8.5 m 13.2 56.9 121.5 138.3 M 103.2 85.7 64.6

Schwabe's telescope was smaller than the standard 80mm and from comparison with other observers, Wolf (in 1865) decided to increase Schwabe's counts by 25%

From MNRAS, 1861 and from the current dataset at SIDC in Brussels

The Wholesale Update of SSNs before 1849 is Clearly Seen in the Distribution of Daily SSNs

Distribution of Daily Values of the 'Official' Sunspot Number

Wolfer's Change to Wolf's Counting Method

- Wolf only counted spots that were 'black' and would have been clearly visible even with moderate seeing thus omitting the smallest spots
- Wolfer disagreed, and pointed out that the above criterion was much too vague and advocating counting every spot that could be seen
- This, of course, introduces a discontinuity in the sunspot number, which was corrected by using a much smaller k value [~0.6 instead of Wolf's 1]

The effect of Wolfer's change to the counting method is also clearly seen in the daily SSN

Distribution of Daily Values of the 'Official' Sunspot Number

J.C. Staudach's Drawings 1749-1799

Bode

Ende

Mallet

Kayser

Hagen

Fritsch*

Lievog Bugge

Wolf undercounted the number of groups on the Staudach drawings by 25%. We use my recount in building the backbone 12

The Sunspot Number was repeatedly subject to revisions and upgrades and not 'carved in stone'

		NUMB	ER OF BSERV	SUNS	POT G	ROUPS	FOR	THE Y HAMBU	EAR:	1683			
	Dave	1.202	Fob	Mar	Apr	Max	100	1.1	Aug	For	Oct	Nov	Doc
						May			Aug				
	1	0	0	0	0	0	0	0	0	0	0	0	0
	2	0	0	0	0	0	0	0	0	0	0	0	0
	3	0	0	0	0	0	0	0	0	0	0	0	0
	4	0	0	0	0	0	0	0	0	0	0	0	0
	5	0	0	0	0	0	0	0	0	0	0	0	0
	6	0	0	0	0	0	0	0	0	0	0	0	0
	7	0	0	0	0	0	0	0	0	0	0	0	0
	8	0	0	0	0	0	0	0	100	0	0	0	0
	9	0	0	0	0	0	0	2)* o	0	0	0	0
	10	0	0	0	0	0	0	SY	0	0	0	0	0
	11	0	0	0	0	0	0	0	0	0	0	0	0
	12	0	0	0	0	0		0	0	0	0	0	0
	13	0	0	0	0	0	00	<u>о</u>	0	0	0	0	0
	14	0	0	0	0	OK C	• •	0	0	0	0	0	0
	15	0	0	0	0	SO	.00), o	0	0	0	0	0
	16	0	0	0	0	0	10	0	0	0	0	0	0
	17	0	0	0	λlø	<u> </u>	0	0	0	0	0	0	0
	18	0	0	<u> </u>	0.0	*W	0	0	0	0	0	0	0
	19	0	0	(1)	0	0	0	0	0	0	0	0	0
	20	0	0	0	0	0	0	0	0	0	0	0	0
	21	0	0	0	0	0	0	0	0	0	0	0	0
	22	0	0	0	0	0	0	0	0	0	0	0	0
	23	0	0	0	0	0	0	0	0	0	0	2	0
	24	0	0	0	0	0	0	0	0	0	0	~	0
	25	0	0	0	0	0	0	0	0	0	0	0	0
	26	0	0	0	0	0	0	0	0	0	0	0	0
	27	0	0	0	0	0	0	0	0	0	0	0	0
	28	0	0	0	0	0	0	0	0	0	0	0	0
	29	0	-99	0	0	0	0	0	0	0	0	0	0
	30	0	-99	0	0	0	0	0	0	0	0	0	0
	31	0	-99	0	-99	0	-99	0	0	-99	0	-99	0
0	anc	0.0	0.0	0.0	0.0	0 0	0 0	0.0	0.0	0.0	0.0	0.0	0 0

The Group Number

Douglas Hoyt and Ken Schatten proposed (1995) to replace the sunspot number with a count of Sunspot Groups. H&S collected 350,000 observations (not all of them good) and labored hard to normalize them to modern observations

The Problem: Discordant Sunspot Numbers

Hoyt & Schatten, GRL 21, 1994

The SSN Workshops. The Work and Thoughts of Many People

http://ssnworkshop.wikia.com/wiki/Home

The Ratio Group/Zürich SSN has **Two Significant Discontinuities**

At ~1947 (After Max Waldmeier took over) and at 1876-1910 (Greenwich calibration drifting) As we found problems with the H&S normalization, we (Svalgaard & Schatten) decided to build a new Group Series 'from scratch' 17

A New Approach: The Backbones

Wolfer	53			1 1 1 1 2 4 5 5 5 5 2 1 1 1 1	4 5 8 7 5 4 2 2 1 1 8 8 2 4 5 5 5 4 4 2 1 8 8 1 4 5 8 7 5 9 2 1 1 1 5 5 7	
Quimby	33			1876	1928	
Broger	32		Malfor			5 2 1 8 1 5
Tacchini	25		vvoliei		4 8 8 7 5 3 8 2 4 4	
Guillaume	24					
Woinoff	21				2 1112112112111111111111	
Konkoly	20			.	4 1 5 5 4 3 2 4 4 3 1 2 4 3	
Mt.Holyoke	19				<u> </u>	
Wolf small	18		7544	<mark> </mark>	171	
Spoerer	18			<mark> </mark>		
Sykora	17				7 5 5 5 2 4 4 5 5 2 4 4 4 5 5 5 2	
Moncalieri	16			 		
Merino	14					
Ricco	12			2 5 5 5 5 5 2 1 1 1 1		
Dawson	9			1 2 7 1 1 1 1 1 1 1 3 4 3 5 5 4 2 1		
Schmidt	8		 	3788334		
Weber	8		.	. • • • • • • • • • • • • • • • • • • •		
Leppig	6			125311544 <mark>444154</mark>		
Bernaerts	3					
Brunner	3					
hwabe		42			<u> </u>	
iea		19		1826	• • • • • • • • • • • • • • • • • • •	
chmidt		17	Schwahe			
olf big tel.		15	Scrivast	•	7 * * * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 *	
Issey		12				
ark		11		212321111111112234552		
ters		9				
eber		8				
storff		8				
		7				
rrington		7				
webst		6				NNNN
wiel		0				10 10 10 10
augergues		5	321181133	I I I I I I I I I I I I I		CCCC
ago		5				
hwarzenbru	unner	5				C-C-C+C
evel		4				
erschel		3	2 1 5 2 5 2 5 1			
LaRue		3				
ndener		2	1 4 2	1 3 2 2 2 3 3 2 3 2 2 2 2 1 2 2 3		
		0				

Normalization Procedure

For each Backbone we regress each observers group counts for each year against those of the primary observer, and plot the result [left panel]. The slope gives us what factor to multiply the observer's count by to match the primary's.

The right panel shows a result for the Wolfer Backbone: blue is Wolf's count [with his small telescope], pink is Wolfer's count [with the larger telescope], and the orange curve is the blue curve multiplied by the slope.

The Backbone is then constructed as the average normalized counts of all observers that are part of the backbone

Harmonizing Schwabe and Wolfer Backbones

The Modern Backbones

Observers

Groups

Mr. Sergio Cortesi, *Locarno*.

Putting it All Together (Pure Solar)

Because there are strong indications that the RGO data is drifting before ~1900. And that is a major reason for the ~1885 change in the level of the H&S Group Sunspot Number

In 1940s Waldmeier in Zürich began to 'weight' larger spots and count them more than once

Weighting Rules: "A spot like a fine point is counted as one spot; a larger spot, but still without penumbra, gets the statistical weight 2, a smallish spot with penumbra gets 3, and a larger one gets 5." Presumably there would be spots with weight 4, too.

When the auxiliary station 'Locarno' became operational in 1957 they adopted the same counting rules as Zürich and continue to this day 23

SSN with/without Weighting

The weight (inflation) factor

The observed (reported) SSN (pink) and the corrected SSN (black)

 Light blue dots show yearly values of unweighted counts from Locarno, *i.e.* not relying on the weight factor formula. The agreement is excellent

The inflation due to weighting explains the second anomaly

New series: http://www.sidc.be/silso/home

Sunspot Index and Longterm Solar Observations

Menu

- Home
- Data
- FAO
- Observers
- News-Archive
- Contact
- Subscribe
- Legal notices

New SSN = Old SSN / 0.6

Transition to the new Sunspot Number successfully completed

Today marked a triple transition for us:

- Uploading the new Sunspot Number archive files containing the daily, monthly and yearly re-calibrated sunspot numbers and the new Group Number series

- In our Web site, switching to the new "Data" pages giving access to the new files, to updated graphics and also to the past version of the Sunspot Number

- Adapting and running the entire monthly procedure to produce the provisional Sunspot Numbers for June 2015 and the associated 12-months forecast and EISN. Thus a lot of work in a single day for our small team.

This is a major (and long-needed) advance.

The result of hard work by many people.

A Topical Issue of 'Solar Physics' is devoted to documenting, discussing, opposing, and criticizing the new series

Day of mont

06 July : 104

07 July : 117

Latest USET observations

(ROB, Brussels) 07/07/2015

NAMES AND ADDRESS OF TAXABLE ADD

We have a SOI of 54 papers as of today.

25

Opposition and Rearguard Action

The open solar magnetic flux (OSF) is the main heliospheric parameter driving the modulation of cosmic rays.

The OSF has been modeled by quantifying the occurrence rate and magnetic flux content of coronal mass ejections fitted to geomagnetic data.

The OSF and the cyclevariable geometry of the heliospheric current sheet allows reconstruction of the cosmic ray modulation potential, φ.

Reconciliation ! 'This just in'

Ilya G. Usoskin, Rainer Arlt, Eleanna Asvestari, Ed Hawkins, Maarit Käpylä, Gennady A. Kovaltsov, Natalie Krivova, Michael Lockwood, Kalevi Mursula, Jezebel O'Reilly, Matthew Owens, Chris J. Scott, Dmitry D. Sokoloff, Sami K. Solanki, Willie Soon, and José M. Vaquero, Astronomy & Astrophysics, July 21, 2015 27

Conclusions

- Both the International Sunspot Number and the Group Sunspot Number had serious errors
- Correcting the errors reconciles the two series and new sunspot series have been constructed
- The new *pure* solar series are confirmed by the geomagnetic records and by the cosmic ray records
- There is no Grand Modern Maximum, rather several similar maxima about 120 years apart
- There is still much more work to be done, and a mechanism has been put in place for updating the sunspot record as needed